Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Planta ; 258(1): 6, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37219701

RESUMEN

MAIN CONCLUSION: LncRNAs regulate flower color formation in Ipomoea nil via vacuolar pH, TCA cycle, and oxidative phosphorylation pathways. The significance of long noncoding RNA (lncRNA) in diverse biological processes is crucial in plant kingdoms. Although study on lncRNAs has been extensive in mammals and model plants, lncRNAs have not been identified in Ipomoea nil (I. nil). In this study, we employed whole transcriptome strand-specific RNA sequencing to identify 11,203 expressed lncRNA candidates, including 961 known lncRNA and 10,242 novel lncRNA in the I. nil genome. These lncRNAs in I. nil had fewer exons and were generally shorter in length compared to mRNA genes. Totally, 1141 different expression lncRNAs (DELs) were significantly identified between white and red flowers. The functional analysis indicated that lncRNA-targeted genes were enriched in the TCA cycle, photosynthesis, and oxidative phosphorylation-related pathway, which was also found in differentially expressed genes (DEGs) functional enrichments. LncRNAs can regulate transcriptional levels through cis- or trans-acting mechanisms. LncRNA cis-targeted genes were significantly enriched in potassium and lysosome. For trans-lncRNA, two energy metabolism pathways, TCA cycles and oxidative phosphorylation, were identified from positive association pairs of trans-lncRNA and mRNA. This research advances our understanding of lncRNAs and their role in flower color development, providing valuable insights for future selective breeding of I. nil.


Asunto(s)
Ipomoea nil , ARN Largo no Codificante , Animales , Exones , Flores , ARN Mensajero , Mamíferos
2.
Crit Rev Food Sci Nutr ; 63(30): 10560-10584, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35647742

RESUMEN

Alzheimer's disease (AD) has brought a heavy burden to society as a representative neurodegenerative disease. The etiology of AD combines multiple factors, concluding family, gender, head trauma, diseases and social psychology. There are multiple hypotheses explaining the pathogenesis of AD such as ß-amyloid (Aß) deposition and tau hyperphosphorylation, which lead to extracellular amyloid plaques and neurofibrillary tangles in neurons. The existing therapeutic drugs have several disadvantages including single target, poor curative effect, and obvious side effects. Tea contains many bioactive components, such as tea polyphenols (TPP), L-theanine (L-TH), tea pigment, tea polysaccharides and caffeine. The epidemiological investigations have shown that drinking tea can reduce the risk of AD. The mechanisms of tea active ingredients in the prevention and regulation of AD includes reducing the generation and aggregation of Aß; inhibiting tau aggregation and hyperphosphorylation; inhibiting neuronal apoptosis and regulate neurotransmitters; relieving oxidative stress and neuroinflammation as well as the regulation of intestinal flora. This review summarizes the different signaling pathways that tea active ingredients regulate AD. Furthermore, we propose the main limitations of current research and future research directions, hoping to contribute to the development of natural functional foods based on tea active ingredients in the prevention and treatment of AD.


Natural AD-modulating active ingredients in tea have been summarized.Influences of drinking tea or tea active ingredients on AD are reviewed.Main regulating mechanisms of tea active ingredients on AD are explained.The main limitations of current research and future directions are proposed.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/metabolismo , Estrés Oxidativo ,
3.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37584203

RESUMEN

As far as health benefit is concerned, dark tea is one of the best beverages in the world. Theabrownins are the major ingredient contributing to the health benefits of dark tea and known as "the soft gold in dark tea." A growing body of evidence indicated that theabrownins are macromolecular pigments with reddish-brown color and mellow taste, and mainly derived from the oxidative polymerization of tea polyphenols. Theabrownins are the main active ingredients in dark tea which brings multiple health-promoting effects in modulating lipid metabolism, reducing body weight gain, attenuating diabetes, mitigating NAFLD, scavenging ROS, and preventing tumors. More importantly, it's their substantial generation in microbial fermentation that endows dark tea with much stronger hypolipidemic effect compared with other types of tea. This review firstly summarizes the most recent findings on the preparation, structural characteristics, and health-promoting effects of theabrownins, emphasizing the underlying molecular mechanism, especially the different mechanisms behind the effect of theabrownins-mediated gut microbiota on the host's multiple health-promoting benefits. Furthermore, this review points out the main limitations of current research and potential future research directions, hoping to provide updated scientific evidence for their better theoretical research and industrial utilization.

4.
Crit Rev Food Sci Nutr ; 63(25): 7598-7626, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35266837

RESUMEN

Sleep disorders have received widespread attention nowadays, which have been promoted by the accelerated pace of life, unhealthy diets and lack of exercise in modern society. The chemical medications to improve sleep has shown serious side effects and risks with high costs. Therefore, it is urgent to develop efficient nutraceuticals from natural sources to ensure sleep quality as a sustainable strategy. As the second most consumed beverage worldwide, the health-promoting effects of tea have long been widely recognized. However, the modulatory effect of teas on sleep disorders has received much less attention. Tea contains various natural sleep-modulating active ingredients such as L-theanine (LTA), caffeine, tea polyphenols (TPP), tea pigments, tea polysaccharides (TPS) and γ-aminobutyric acid (GABA). This review focuses on the potential influence and main regulating mechanisms of different tea active ingredients on sleep, including being absorbed by the small intestine and then cross the blood-brain barrier to act on neurons in the brain as neurotransmitters, manipulating the immune system and further affect sleep-wake cycle by regulating the levels of cytokines, and controlling the gut microbes to maintain the homeostasis of circadian rhythm. Current research progress and limitations are summarized and several future development directions are also proposed. This review hopes to provide new insights into the future elucidation of the sleep-regulating mechanisms of different teas and their natural active ingredients and the development of tea-based functional foods for alleviating sleep disorders. HighlightsNatural sleep-modulating active ingredients in tea have been summarized.Influences of drinking tea or tea active ingredients on sleep are reviewed.Three main regulating mechanisms of tea active ingredients on sleep are explained.The associations among nervous system, immune system and intestinal microbiota are investigated.The potential of developing delivery carriers for tea active ingredients is proposed.


Asunto(s)
Microbioma Gastrointestinal , Trastornos del Sueño-Vigilia , Humanos , , Sueño , Polifenoles/farmacología , Sistema Inmunológico
5.
Crit Rev Food Sci Nutr ; : 1-25, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37493455

RESUMEN

Tea contains a variety of bioactive components, including catechins, amino acids, tea pigments, caffeine and tea polysaccharides, which exhibit multiple biological activities. These functional components in tea provide a variety of unique flavors, such as bitterness, astringency, sourness, sweetness and umami, which meet the demand of people for natural plant drinks with health benefits and pleasant flavor. Meanwhile, the traditional process of tea plantation, manufacturing and circulation are often accompanied by the safety problems of pesticide residue, heavy metal, organic solvents and other exogenous risks. High-quality tea extract refers to the special tea extract obtained by enriching the specific components of tea. Through green and efficient extraction technologies, diversed high-quality tea extracts such as high-fragrance and high-amino acid tea extracts, low-caffeine and high-catechin tea extracts, high-bioavailability and high-theaflavin tea extracts, high-antioxidant and high-tea polysaccharide tea extracts, high-umami-taste and low-bitter and astringent taste tea extracts are produced. Furthermore, rapid detection, green control and intelligent processing are applied to monitor the quality of tea in real-time, which guarantee the stability and safety of high-quality tea extracts with enhanced efficiency. These emerging technologies will realize the functionalization and specialization of high-quality tea extracts, and promote the sustainable development of tea industry.


Main high-quality tea extracts and their preparation methods were introduced.Potential pollutants in the processing of tea extracts and their detection methods were proposed.Emerging intelligent processing technologies of tea extract were summarized.The applications of high-quality tea extracts in food industry were explored.Future trends of tea extracts and relevant suggestions were presented.

6.
Compr Rev Food Sci Food Saf ; 22(4): 2945-2976, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37166996

RESUMEN

Due to its rich health benefits and unique cultural charm, tea drinking is increasingly popular with the public in modern society. The safety of tea is the top priority that affects the development of tea industry and the health of consumers. During the process of tea growth, pesticides are used to prevent the invasion of pests and diseases with maintaining high quality and stable yield. Because hot water brewing is the traditional way of tea consumption, water is the main carrier for pesticide residues in tea into human body accompanied by potential risks. In this review, pesticides used in tea gardens are divided into two categories according to their solubility, among which water-soluble pesticides pose a greater risk. We summarized the methods of the sample pretreatment and detection of pesticide residues and expounded the migration patterns and influencing factors of tea throughout the process of growth, processing, storage, and consumption. Moreover, the toxicity and safety of pesticide residues and diseases caused by human intake were analyzed. The risk assessment and traceability of pesticide residues in tea were carried out, and potential eco-friendly improvement strategies were proposed. The review is expected to provide a valuable reference for reducing risks of pesticide residues in tea and ensuring the safety of tea consumption.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Humanos , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/química , Té/química , Plaguicidas/análisis , Medición de Riesgo/métodos , Agua
7.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35833478

RESUMEN

Tea is a traditional plant beverage originating from China as one of the most popular beverages worldwide, which has been an important companion in modern society. Nevertheless, as the waste after tea processing, tea residues from agriculture, industry and kitchen waste are discarded in large quantities, resulting in waste of resources and environmental pollution. In recent years, the comprehensive utilization of tea residue resources has attracted people's attention. The bioactive components remaining in tea residues demonstrate a variety of health benefits and can be recycled using advanced extraction processes. Furthermore, researchers have been devoted to converting tea residues into derivatives such as biosorbents, agricultural compost, and animal feeds through thermochemical techniques and biotechnology. This review summarized the chemical composition and physiological activities of bioactive components from tea residue. The extraction methods of bioactive components in tea residue were elucidated and the main high-value applications of tea residues were proposed. On this basis, the utilization of tea residues can be developed from a single way to a multi-channel or cascade way to improve its economic efficiency. Novel applications of tea residues in different fields, including food development, environmental remediation, energy production and composite materials, are of far-reaching significance. This review aims to provide new insights into developing the utilization of tea residue using a comprehensive strategy and exploring the mechanism of active components from tea residue on human health and their potential applications in different areas.HighlightsThe composition and function of tea residue active components were introduced.The extraction methods of active components from tea residue were proposed.The main high-value applications of tea residues were summarized.The current limitations and future directions of tea residue utilization were concluded.

8.
Crit Rev Food Sci Nutr ; : 1-23, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35770615

RESUMEN

With the aggravating aging of modern society, the sarcopenia-based aging syndrome poses a serious potential threat to the health of the elderly. Natural dietary supplements show great potential to reduce muscle wasting and enhance muscle performance. Tea has been widely recognized for its health-promoting effects. which contains active ingredients such as tea polyphenols, tea pigments, tea polysaccharides, theanine, caffeine, and vitamins. In different tea production processes, the oxidative condensation and microbial transformation of catechins and other natural substances from tea promotes the production of various tea pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). Tea pigments have shown a positive effect on maintaining muscle health. Nevertheless, the relationship between tea pigments and skeletal muscle function has not been comprehensively elucidated. In addition, the numerous research on the extraction and purification of tea pigments is disordered with the limited recent progress due to the complexity of species and molecular structure. In this review, we sort out the strategies for the separation of tea pigments, and discuss the structures of tea pigments. On this basis, the regulation mechanisms of tea pigments on muscle functional were emphasized. This review highlights the current understanding on the extraction methods, molecular structures and regulation mechanisms of muscle function of tea pigments. Furthermore, main limitations and future perspectives are proposed to provide new insights into broadening theoretical research and industrial applications of tea pigments in the future.


The extraction and isolation methods of tea pigments are detailedly introduced.The structural research progress of tea pigments are summarized.The effects of tea pigments in the prevention of muscle diseases are introduced.The mechanism of tea pigments in enhancing skeletal muscle function are proposed.

9.
J Sep Sci ; 45(4): 908-918, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34897993

RESUMEN

In this study, a 4-formylphenylboronic acid-modified cross-linked chitosan magnetic nanoparticle (FPBA@CCHS@Fe3 O4 ) was fabricated. The synthesized material was utilized as the magnetic solid-phase extraction adsorbent for the enrichment of six benzoylurea pesticides. In addition to B-N coordination, FPBA@CCHS@Fe3 O4 interacts with benzoylureas through hydrogen bonds and π-π stacking interaction on account of rich active groups (amino and hydroxyl) and aromatic rings in structure. Compared to traditional extraction methods, less adsorbent (20 mg) and reduced extraction time (3 min) were achieved. The adsorbent also exhibited good reusability (no less than 10 times). Coupled with a high-performance liquid chromatography-diode array detector, satisfactory recoveries (89.1-103.9%) and an acceptable limit of detection (0.2-0.7 µg/L) were obtained. Under optimized conditions, the established method was successfully applied to the tea infusion samples from six major tea categories with acceptable recoveries ranging from 76.8 to 110%, indicating its application potential for the quantitative detection of pesticides in complex matrices.

10.
Compr Rev Food Sci Food Saf ; 21(6): 4546-4572, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36201379

RESUMEN

Pu-erh tea belongs to dark tea among six major teas in China. As an important kind of post-fermented tea with complex microbial composition, Pu-erh tea is highly praised by many consumers owing to its unique and rich flavor and taste. In recent years, Pu-erh tea has exhibited various physiological activities to prevent and treat metabolic diseases. This review focuses on the fungi in Pu-erh tea and introduces the sources, types, and functions of fungi in Pu-erh tea, as well as the influence on the quality of Pu-erh tea and potential safety risks. During the process of fermentation and aging of Pu-erh tea, fungi contribute to complex chemical changes in bioactive components of tea. Therefore, we examine the important role that fungi play in the quality formation of Pu-erh tea. The associations among the microbial composition, chemicals excreted, and potential food hazards are discussed during the pile-fermentation of Pu-erh tea. The quality of Pu-erh tea has exhibited profound changes during the process of pile-fermentation, including color, aroma, taste, and the bottom of the leaves, which are inseparable from the fungus in the pile-fermentation of Pu-erh tea. Specifically, the application prospects of various detection methods of mycotoxins in assessing the safety of Pu-erh tea are proposed. This review aims to fully understand the importance of fungi in the production of Pu-erh tea and further provides new insights into subtly regulating the piling process to improve the nutritional properties and guarantee the safety of Pu-erh tea.


Asunto(s)
Micobioma , , Té/química , Hongos , Fermentación , Hojas de la Planta/química
11.
Plant Foods Hum Nutr ; 77(2): 258-264, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35612700

RESUMEN

Various functional components in tea have been well developed, but less research has been explored on glycoproteins in tea. In this paper, three types of glycoprotein fractions, namely tea selenium-binding glycoprotein1-1 (TSBGP1-1), TSBGP2-1, and TSBGP3-1, respectively, were extracted and purified from selenium-enriched coarse green tea. Chemical analysis revealed that three fractions were glycoproteins, but their selenium content, molecular weight, and monosaccharide composition were significantly different. Fourier transforms infrared (FT-IR) analysis indicated that three fractions contained characteristic absorption peaks of glycoproteins but differed in secondary structural composition. Thermogravimetric (TG) analysis showed that the thermal stability of the three fractions was dramatically distinct. The in vitro hypoglycemic activity showed that TSBGPs significantly activated the insulin receptor substrate 2 (IRS2)/protein kinase B (Akt) pathway in LO2 cells, then enhanced glucose metabolism and inhibited gluconeogenesis, and finally ameliorated insulin resistance (IR) and glucose metabolism disorders. Furthermore, Pearson correlation analysis reveals that the hypoglycemic activity was significantly correlated with Se, protein, monosaccharide composition (especially glucose), molecular weight, and secondary structure. Our results show that Se-enriched tea glycoprotein is a desirable candidate for developing anti-diabetic food, and TSBGP-2 and TSBGP-3 had a better regulation effect. Our results can provide a research reference for the extraction, physicochemical property, and function of selenium-enriched plant glycoproteins.


Asunto(s)
Selenio , Glicoproteínas , Hipoglucemiantes/análisis , Hipoglucemiantes/farmacología , Monosacáridos/análisis , Selenio/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Té/química
12.
Mikrochim Acta ; 188(10): 346, 2021 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-34537909

RESUMEN

Copper nanomaterials based on DNA scaffold (DNA-Cu NMs) are becoming a novel fluorescent material, but it is still challenging to obtain highly fluorescent DNA-Cu NMs with excellent stability. In this work, we report a kind of copper nano-assemblies (Cu NASs) with aggregation-induced emission enhancement (AIEE) property using DNA dendrimers with sticky end as template. The sticky end of the DNA dendrimers induced the formation of much bigger Cu NASs with average size ranging from 131 to 264 nm, depending on the length of the DNA dendrimer sticky end from 6 bases to 27 bases. Compared with complete complementary DNA dendrimer, nearly 6-fold fluorescence enhancement was achieved using DNA dendrimer with 27 bases sticky end. Moreover, the DNA dendrimer-Cu NASs demonstrated excellent stability in serum and could be rapidly quenched by Pb2+ ions. Based on the above property, highly sensitive and selective fluorescent detection of Pb2+ ions was possible with a linear range of 2.0-100 nM and a detection limit of 0.75 nM. Due to the sensitive and rapid response to Pb2+ as well as excellent stability in complex matrix, the proposed fluorescent Cu NASs demonstrated high potential as an excellent fluorescent probe for Pb2+ in complex matrix.


Asunto(s)
Cobre/química , ADN/química , Dendrímeros/química , Colorantes Fluorescentes/química , Plomo/análisis , Nanopartículas/química , Fluorescencia , Iones , Plomo/química , Albúmina Sérica Bovina/química
13.
Mikrochim Acta ; 188(11): 363, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34606019

RESUMEN

A core-shell QDs@mSiO2@y-AuNCs nanoprobe was prepared, and a new ratiometric fluorescent sensor for thiram detection was developed. The mechanism of thiram sensing was investigated using FTIR, surface-enhanced Raman, XPS spectra, etc. The sensing of thiram was mainly ascribed to the formation of Au-S bonds between thiram and Au atoms on y-AuNCs surface, resulting in the dissociation of 11-MUA ligand from the y-AuNCs surface and the charge transfer between thiram and y-AuNCs. In the ratiometric fluorescence detection of thiram based on QDs@mSiO2@y-AuNCs, a linear range of 0.5-60 ng/mL was obtained with a LOD of 0.19 ng/mL. Compared with the fluorescence detection based on y-AuNCs, the ratiometric fluorescence detection of thiram demonstrated 3-fold enhanced sensitivity. The improvement was ascribed to two aspects: the fluorescence emission of y-AuNCs was enhanced after they were loaded onto the QDs@mSiO2 nanoparticles; the ratiometric detection mode provided more precise sensing. The detection of thiram can be completed immediately after mixing the nanoprobe with thiram. Good recoveries of thiram in apple and pear samples were achieved. All the above results demonstrated the high potential of this method in practical applications.


Asunto(s)
Oro
14.
Molecules ; 26(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073353

RESUMEN

New nanocomposites, Fe3O4@Au-FITC, were prepared and explored to develop a fluorescent detection of Pb2+. The Fe3O4@AuNPs-FITC nanocomposites could be etched by Pb2+ in the presence of Na2S2O3, leading to fluorescence recovery of FITC quenched by Fe3O4@Au nanocomposites. With the increase of Pb2+ concentration, the fluorescence recovery of Fe3O4@AuNPs-FITC increased gradually. Under optimized conditions, a detection limit of 5.2 nmol/L of Pb2+ with a linear range of 0.02-2.0 µmol/L were obtained. The assay demonstrated negligible response to common metal ions. Recoveries of 98.2-106.4% were obtained when this fluorescent method was applied in detecting Pb2+ spiked in a lake-water sample. The above results demonstrated the high potential of ion-induced nanomaterial etching in developing robust fluorescent assays.

15.
J Sci Food Agric ; 101(15): 6563-6577, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34018615

RESUMEN

BACKGROUND: Dark tea, comprising one of the six major teas, has many biological activities, which originate from their active substrates, such as polyphenols, polysaccharides, and so on. The hypoglycemic effect is one of its most prominent activities, although less is known about their evaluation and potential role in the hypoglycemic mechanism. RESULTS: In the present study, we separately analyzed the phytochemical composition, glycosidase inhibition and free radical scavenging activities, and hypoglycemic activity in type 2 diabetes mellitus mice, as well as the alleviation of insulin resistance in HepG2 cells of four dark tea aqueous extracts. The results showed that the phytochemical composition of dark tea aqueous extracts was significantly different, and they all had good glycosidase inhibition and free radical scavenging activities, in vivo hypoglycemic activity and alleviation of insulin resistance, and could also activate the phosphatidylinositol 3-kinase-Akt-perixisome proliferation-activated receptor cascade signaling pathway to regulate glucose and lipid metabolism, change the key enzyme activities related to glucose metabolism and antioxidant activity, and reduce oxidative stress and inflammatory factor levels. Among them, Liubao brick tea (LBT) and Pu-erh tea (PET) possessed better glycosidase inhibitory activity, in vivo hypoglycemic activity and improved insulin resistance activity, whereas Qingzhuan brick tea and Fuzhuan brick tea had better free radical scavenging activity, which may be explained by their distinct phytochemical compositions, such as tea proteins, polysaccharides, polyphenols, catechins, and tea pigments and some elements. CONCLUSION: Dark tea is a highly attractive candidate for developing antidiabetic food, LBT and PET may be good natural sources of agricultural products with anti-diabetic effects. © 2021 Society of Chemical Industry.


Asunto(s)
Glucemia/metabolismo , Camellia sinensis/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Hipoglucemiantes/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Fitoquímicos/metabolismo , Animales , Antioxidantes/química , Antioxidantes/metabolismo , Camellia sinensis/química , China , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Células Hep G2 , Humanos , Hipoglucemiantes/química , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Receptores Activados del Proliferador del Peroxisoma/genética , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Fitoquímicos/química , Extractos Vegetales/química , Extractos Vegetales/metabolismo ,
16.
Glycoconj J ; 37(2): 241-250, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31915970

RESUMEN

Coarse tea is made of mature tea plant (Camellia sinensis L.) shoots and is generally discarded as a worthless crop product, but has been proved an excellent material for the treatment of diabetes. This study aims to evaluate the effects of the extraction techniques WE (water extraction), UAE (ultrasound-assisted extraction), MAE (microwave-assisted extraction), and EE (enzyme extraction) on the physicochemical properties and antidiabetic activities of polysaccharides from coarse tea (CTPSs). The results showed that all four CTPSs had homogeneity in the monosaccharide types and similar IR (Infrared spectroscopy) characteristic absorption peaks, but differed in monosaccharide proportion and molecular weight distribution. Compared with the other three extraction techniques, CCTPS extracted by EE had the lowest protein content, the highest total sugar content of 71.83% and a polysaccharide yield of 4.52%. In addition, EE-CTPS had the best hypoglycemic activity that was better than ordinary green tea polysaccharides, the α-glucosidase and α-amylase inhibitory activities of EE-CTPS were highest in the range of 2-10 mg/mL compared with the other three CTPSs, which may be related to its smaller molecular weight and porous structure. The results suggested that the EE method was a good way to extract polysaccharides from coarse tea for food and pharmaceutical production.


Asunto(s)
Fraccionamiento Químico/métodos , Inhibidores Enzimáticos/análisis , Hipoglucemiantes/análisis , Polisacáridos/análisis , Té/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Glucosidasas/antagonistas & inhibidores , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Microondas , Polisacáridos/química , Polisacáridos/farmacología , Ondas Ultrasónicas , alfa-Amilasas/antagonistas & inhibidores
17.
Crit Rev Food Sci Nutr ; 60(8): 1243-1264, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30799648

RESUMEN

Epigallocatechin gallate (EGCG) is a natural phenolic compound found in many plants, especially in green tea, which is a popular and restorative beverage with many claimed health benefits such as antioxidant, anti-cancer, anti-microbial, anti-diabetic, and anti-obesity activities. Despite its great curative potential, the poor bioavailability of EGCG restricts its clinical applcation. However, nanoformulations of EGCG are emerging as new alternatives to traditional formulations. This review focuses on the nanochemopreventive applications of various EGCG nanoparticles such as lipid-based, polymer-based, carbohydrate-based, protein-based, and metal-based nanoparticles. EGCG hybridized with these nanocarriers is capable of achieving advanced functions such as targeted release, active targeting, and enhanced penetration, ultimately increasing the bioavailability of EGCG. In addition, this review also summarizes the challenges for the use of EGCG in therapeutic applications, and suggests future directions for progress.


Asunto(s)
Catequina/análogos & derivados , Nanopartículas/administración & dosificación , Nanopartículas/química , Catequina/administración & dosificación , Catequina/química , Catequina/farmacocinética , Catequina/uso terapéutico , Humanos , Té/química
18.
Mikrochim Acta ; 187(4): 255, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32239351

RESUMEN

We report the first use of metallic nanozyme as colorimetric probe for Pb2+ determination. The method is based on the surface leaching of Au@PtNP nanozyme by Pb2+-S2O32- ions, accompanied by a decreased catalytic activity of the metallic nanozyme. To construct this colorimetric determination, the Pt deposition onto the AuNPs was carefully investigated and other experimental factors including kind of substrate and buffer were optimized. With increasing Pb2+ concentration, the catalytic activity of the Au@PtNPs decreased gradually. As a result, the blue color at 650 nm from the oxidation of 3,3',5,5'-tetramethylbenzidine by H2O2 faded gradually. A determination limit of 3.0 nM Pb2+ with a linear range from 20 to 800 nM was obtained. The assay demonstrated negligible response to common metal ions even at elevated concentrations. This colorimetric method was applied to the determination of Pb2+ ions spiked in lake water samples, and good recoveries (96.8-105.2%) were obtained. The above results indicate the potential application of metallic nanozymes in developing robust colorimetric assays. Graphical abstract Schematic representation of the surface leaching of Au@PtNP nanozyme by Pb2+-S2O32- ions, accompanying the decreased catalytic activity of the metallic nanozyme.


Asunto(s)
Colorimetría/métodos , Plomo/análisis , Nanopartículas del Metal/química , Bencidinas/química , Catálisis , Compuestos Cromogénicos/química , Oro/química , Peróxido de Hidrógeno/química , Lagos/análisis , Plomo/química , Oxidación-Reducción , Platino (Metal)/química , Tiosulfatos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química
19.
Int J Mol Sci ; 20(24)2019 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-31817990

RESUMEN

Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.


Asunto(s)
Fitoquímicos/farmacología , Sustancias Protectoras/farmacología , Té/química , Animales , Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Disponibilidad Biológica , Catequina/metabolismo , Catequina/farmacología , Humanos , Fitoquímicos/metabolismo , Fitoquímicos/farmacocinética , Polifenoles/metabolismo , Polifenoles/farmacología
20.
Food Chem ; 440: 138185, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100966

RESUMEN

A sensitive electrochemical assay for simultaneously detecting cadmium ion (Cd2+) and mercury ion (Hg2+) with the aptamer as recognition unit was established, in which methylene blue (MB) and target-triggered in-situ generated Ag nanoclusters (Ag NCs) were identified as signal reporters. Multi-walled carbon nanotubes and gold nanoparticles composites were prepared with polyethyleneimine to amplify electrical signals of screen-printed electrodes. Due to the particular base sequences, MB labeled Cd2+ aptamer paired with ssDNA through T-Hg-T structure with Hg2+. Notably, the C-rich structure in ssDNA acted as a template for the generation of Ag NCs, which could induce differential pulse voltammetry signals corresponding to Hg2+ concentrations. This electrochemical aptasensor exhibited detection limits of 94.01 pg/mL and 15.74 pg/mL for Cd2+ and Hg2+, respectively. The developed aptasensor allowed for practical application to tea and vegetable samples with satisfactory accuracy. This work possesses potential in developing biosensing technologies for simultaneous determination of multiple heavy metals.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Mercurio , Nanopartículas del Metal , Nanotubos de Carbono , Oro/química , Cadmio , Nanotubos de Carbono/química , Azul de Metileno/química , ADN de Cadena Simple , Electrodos , Técnicas Electroquímicas , Aptámeros de Nucleótidos/química , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA