Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Respir Res ; 25(1): 101, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38403646

RESUMEN

BACKGROUND: Although some studies have indicated that Psoriasis could contribute to the risk of idiopathic pulmonary fibrosis (IPF), no study has reported a clear causal association between them. Our aim was to explore the potential relationship between Psoriasis and IPF using Mendelian randomization (MR) design. METHODS: To explore a causal association between Psoriasis and IPF, we used genetic instruments from the largest available genome-wide association study (GWAS) of European ancestry, including psoriasis (5314 cases, 457,619 controls) and IPF (1028 cases, 196,986 controls). Our main analyses were conducted by inverse-variance weighted (IVW) method with random-effects model, with the other complementary four analyses: weighted median method, weighted mode, multivariable MR and MR-Egger approach. RESULTS: The results of IVW methods demonstrated that genetically predicted psoriasis was significantly associated with higher odds of IPF, with an odds ratio (OR) of 1.09 (95%CI, 1.01-1.18; P = 0.02). Weighted median method, weighted mode and multivariable MR also demonstrated directionally similar results (P < 0.05), while the MR-Egger regression did not reveal the impact of psoriasis on IPF (OR = 1.09, 95%CI, 0.98-1.21; P = 0.11). In addition, both funnel plots and MR-Egger intercepts indicated no directional pleiotropic effects between psoriasis and IPF. CONCLUSIONS: Our study provided potential evidence between genetically predicted psoriasis and IPF, which suggests that understanding the mutual risk factors between psoriasis and IPF can facilitate the clinical management of both diseases.


Asunto(s)
Fibrosis Pulmonar Idiopática , Psoriasis , Humanos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/epidemiología , Fibrosis Pulmonar Idiopática/genética , Nonoxinol , Psoriasis/diagnóstico , Psoriasis/epidemiología , Psoriasis/genética
2.
Purinergic Signal ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446337

RESUMEN

Despite the use of various therapies such as hematopoietic stem cell transplantation and chimeric antigen receptor T cell therapy (CAR-T), the prognosis of patients with acute myeloid leukemia (AML) is still generally poor. However, immunotherapy is currently a hot topic in the treatment of hematological tumors. Extracellular adenosine triphosphate (ATP) can be converted to adenosine diphosphate (ADP) via CD39, and ADP can be converted to adenosine via CD73, which can bind to P1 and P2 receptors to exert immunomodulatory effects. Research on the mechanism of the purinergic signaling pathway can provide a new direction for the treatment of AML, and inhibitors of this signaling pathway have been discovered by several researchers and gradually applied in the clinic. In this paper, the mechanism of the purinergic signaling pathway and its clinical application are described, revealing a new target for the treatment of AML and subsequent improvement in patient prognosis.

3.
Environ Res ; 258: 119275, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821463

RESUMEN

Soil enzyme carbon (C): nitrogen (N): phosphorous (P) stoichiometry and their vector model has been widely used to elucidate the balance between microbial nutrient requirements and soil nutrient availability. However, limited knowledge is available on the dynamics of soil enzyme stoichiometry and microbial nutrient limitation following afforestation, especially in the economic forest. In this study, the effects of citrus plantation on C: N: P stoichiometry were assessed through a comparative study between cropland and citrus plantations with varying durations of afforestation (i.e., 3, 15, 25, and 35 years). It was found that the C, N, and P contents in the soil (SOC, STN, and STP), microbial biomass (MBC, MBN, and MBP), as well as the activities of C-, N-, and P-acquiring enzymes (BG, NAG, and AP), were 1.02-2.51 times higher than those in cropland. Additionally, C, N, and P contents in soil and microbial biomass increased consistently with increasing afforestation time. While the activities of C-, N-, and P-acquiring enzymes increased from 3 years to 25 years and then significantly decreased. In addition to NAG: AP, the stoichiometry of C, N, and P in soil (SOC: STN, SOC: STP, and STN: STP) and microbial biomass (MBC: MBN, MBC: MBP, and MBN: MBP), along with BG: NAG, exhibited a decline of 7.69-27.38% compared to cropland. Moreover, the majority of the C: N: P stoichiometry in soil, microbial biomass, and enzymes consistently decreased with increasing afforestation time, except for SOC: STN and NAG: AP, which exhibited an opposite trend. Furthermore, a significant decrease in microbial carbon limitation and an increase in microbial nitrogen limitation were observed with increasing afforestation time. Collectively, the dynamic of microbial nutrient limitation was primarily influenced by the interaction between soil nutrients and edaphic factors. The findings suggest that with the increasing duration of citrus plantation, it is crucial to focus on nitrogen (N) fertilization while maintaining a delicate balance between fertilization strategies and soil acidity levels.

4.
J Cardiovasc Pharmacol ; 81(1): 4-14, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36607775

RESUMEN

ABSTRACT: Sodium-glucose cotransporter 2 (SGLT2) inhibitors are widely used to treat diabetes mellitus. Abundant evidence has shown that SGLT2 inhibitors can reduce hospitalization for heart failure (HF) in patients with or without diabetes. An increasing number of studies are being conducted on the mechanisms of action of SGLT2 inhibitors in HF. Our review summarizes a series of clinical trials on the cardioprotective effects of SGLT2 inhibitors in the treatment of HF. We have summarized several classical SGLT2 inhibitors in cardioprotection research, including empagliflozin, dapagliflozin, canagliflozin, ertugliflozin, and sotagliflozin. In addition, we provided a brief overview of the safety and benefits of SGLT2 inhibitors. Finally, we focused on the mechanisms of SGLT2 inhibitors in the treatment of HF, including ion-exchange regulation, volume regulation, ventricular remodeling, and cardiac energy metabolism. Exploring the mechanisms of SGLT2 inhibitors has provided insight into repurposing these diabetic drugs for the treatment of HF.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Canagliflozina/efectos adversos
5.
Proc Natl Acad Sci U S A ; 117(10): 5204-5209, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32094194

RESUMEN

Traditionally, precipitates in a material are thought to serve as obstacles to dislocation glide and cause hardening of the material. This conventional wisdom, however, fails to explain recent discoveries of ultrahigh-strength and large-ductility materials with a high density of nanoscale precipitates, as obstacles to dislocation glide often lead to high stress concentration and even microcracks, a cause of progressive strain localization and the origin of the strength-ductility conflict. Here we reveal that nanoprecipitates provide a unique type of sustainable dislocation sources at sufficiently high stress, and that a dense dispersion of nanoprecipitates simultaneously serve as dislocation sources and obstacles, leading to a sustainable and self-hardening deformation mechanism for enhanced ductility and high strength. The condition to achieve sustainable dislocation nucleation from a nanoprecipitate is governed by the lattice mismatch between the precipitate and matrix, with stress comparable to the recently reported high strength in metals with large amount of nanoscale precipitates. It is also shown that the combination of Orowan's precipitate hardening model and our critical condition for dislocation nucleation at a nanoprecipitate immediately provides a criterion to select precipitate size and spacing in material design. The findings reported here thus may help establish a foundation for strength-ductility optimization through densely dispersed nanoprecipitates in multiple-element alloy systems.

6.
Ecotoxicol Environ Saf ; 250: 114489, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603485

RESUMEN

Coke oven emissions (COEs) contain many carcinogenic polycyclic aromatic hydrocarbons (PAHs). Telomere damage is an early biological marker reflecting long-term COEs-exposure. Whereas, whether the genetic variations of telomere-regulated gene TNKS have an effect on the COEs-induced telomere damage is unknown. So we detected the environmental exposure levels, relative telomere length (RTL), and TNKS genetic polymorphisms among 544 COEs-exposure workers and 238 healthy participants. We found that the RTL of the wild homozygous GG genotype in rs1055328 locus was statistically shorter compared with the CG+CC genotype for the healthy participants using covariance analysis(P = 0.008). In the Generalized linear model (GLM) analysis, TNKS rs1055328 GG could accelerate telomere shortening (P = 0.011); and the interaction between TNKS rs1055328 GG and COEs-exposure had an effect on RTL (P = 0.002). In conclusion, this study was the first to discover the role of TNKS rs1055328 locus in COEs-induced telomere damage, and proved that chromosomal damage was a combined consequence of environmental and genetic factors.


Asunto(s)
Coque , Exposición Profesional , Hidrocarburos Policíclicos Aromáticos , Tanquirasas , Humanos , Coque/efectos adversos , Daño del ADN , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Polimorfismo Genético , Tanquirasas/genética , Telómero/genética
7.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1664-1672, 2023 Mar.
Artículo en Zh | MEDLINE | ID: mdl-37005854

RESUMEN

In this study, the Web of Science and China National Knowledge Infrastructure(CNKI) were searched comprehensively for the literature about the research on Polygalae Radix. After manual screening, 1 207 Chinese articles and 263 English articles were included in this study. Excel was used to draw the line chart of the annual number of relevant publications. CiteSpace 6.1.R3 was used for the visual analysis of author cooperation, publishing institutions, keyword co-occurrence, keyword clustering, and bursts in the research on Polygalae Radix. The results showed that the number of articles published in Chinese and English increased linearly, which indicated the rising research popularity of Polygalae Radix. WANG J and LIU X were the authors publishing the most articles in Chinese and English, respectively. Shanxi University of Chinese Medicine and Chinese Academy of Medical Sciences were the research institutions with the largest number of Chinese and English publications in this field, respectively. The institutions publishing the relevant articles in English formed a system with the Chinese Academy of Medical Sciences as the core. According to the keywords, the research hotspots of Polygalae Radix included variety selection and breeding, quality standard, extraction and identification of active chemical components, prescription compatibility, processing, clinical medication rules, and pharmacological mechanism. The research frontiers were the molecular mechanisms of Polygalae Radix and its active components in exerting the protective effect on brain nerve, regulating receptor pathways, alleviating anxiety and Alzheimer's disease, as well as data mining and clinical medication summary. This study has reference significance for the topic selection and frontier identification of the future research on Polygalae Radix.


Asunto(s)
Fitomejoramiento , Raíces de Plantas , China , Raíces de Plantas/química , Encéfalo , Publicaciones
8.
Microvasc Res ; 140: 104276, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34742813

RESUMEN

PURPOSE: We previously reported that a calpain inhibitor (CAI) prevents the development of atherosclerosis in rats. This study aimed to investigate the effects of CAI (1 mg/kg) on atherosclerosis in apolipoprotein E knockout (ApoE KO) mice that were fed a high-fat diet (HFD) and explore the underlying mechanism by analyzing the expression of genes related to the uptake and efflux of cholesterol. METHODS: Atherosclerotic plaques were evaluated. The activity of calpain in the aorta and that of superoxide dismutase (SOD) in the serum were assessed. Lipid profiles in the serum and liver were examined. Serum oxidized low-density lipoprotein (oxLDL), malondialdehyde (MDA), tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) levels were measured. The mRNA expressions of CD68, TNF-α, IL-6, CD36, scavenger receptor (SR-A), peroxisome proliferator-activated receptor gamma (PPAR-γ), liver-x-receptor alpha (LXR-α), and ATP-binding cassette transporter class A1 (ABCA1) in the aorta and peritoneal macrophages were also evaluated. RESULTS: CAI reduced calpain activity in the aorta. CAI also impeded atherosclerotic lesion formation and mRNA expression of CD68 in the aorta and peritoneal macrophages of ApoE KO mice compared with those of mice receiving HFD. However, CAI had no effect on body weight and lipid levels in both the serum and liver. CAI significantly decreased MDA, oxLDL, TNF-α, and IL-6 levels and increased SOD activity in the serum. Moreover, CAI significantly inhibited the mRNA expression of TNF-α and IL-6 genes in the aorta and peritoneal macrophages. In addition, CAI significantly downregulated the mRNA expression of scavenger receptors CD36 and SR-A and upregulated the expression of genes involved in the cholesterol efflux pathway, i.e., PPAR-γ, LXR-α, and ABCA1 in the aorta and peritoneal macrophages. CONCLUSIONS: CAI inhibited the development of atherosclerotic lesions in ApoE KO mice, and this effect might be related to the reduction of oxidative stress and inflammation and the improvement of cholesterol intake and efflux pathways.


Asunto(s)
Aorta/efectos de los fármacos , Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Calpaína/antagonistas & inhibidores , Colesterol/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Leupeptinas/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , ARN Mensajero/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/metabolismo , Aorta/enzimología , Aorta/patología , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Aterosclerosis/enzimología , Aterosclerosis/genética , Aterosclerosis/patología , Calpaína/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Metabolismo de los Lípidos/genética , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Macrófagos Peritoneales/enzimología , Macrófagos Peritoneales/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , PPAR gamma/genética , PPAR gamma/metabolismo , Placa Aterosclerótica , ARN Mensajero/genética , Receptores Depuradores de Clase A/genética , Receptores Depuradores de Clase A/metabolismo
9.
Biomarkers ; 27(1): 79-85, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34882057

RESUMEN

BACKGROUND: Lung cancer (LC) is the leading cause of cancer-related morbidity and mortality in China. Exploring novel biomarkers for the early detection of LC is important. MATERIALS AND METHODS: We quantified DNA methylation levels of three CpG sites of FYB gene in peripheral blood in 163 early-stage LC cases (88.3% at stage I) and 187 age- and gender-matched healthy controls. Covariates-adjusted odds ratios (ORs) for -10% methylation were calculated by binary logistic regression. RESULTS: With multiple testing corrections, hypomethylation of FYB_CpG_4 was significantly associated with LC (OR = 2.04, p = 4.50E-04) even with LC at stage I (OR = 1.41, p = 0.003) without obvious bias between genders, but it mainly affected the subjects older than 55 years (OR = 2.04, p = 0.015). Hypomethylation of FYB_CpG_2 was also associated with LC, but only for the males (OR = 1.76, p = 0.018). FYB_CpG_3 methylation had no association with LC, but interestingly its methylation level in the males was only half of that in the females. DISCUSSION AND CONCLUSIONS: We proposed a novel association between blood-based abnormal FYB methylation and very early-stage LC. The age- and gender-related DNA methylation patterns also revealed the diversity and precision of epigenetic regulations.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Metilación de ADN , Neoplasias Pulmonares , Proteínas Adaptadoras Transductoras de Señales/genética , Biomarcadores , Estudios de Casos y Controles , Islas de CpG/genética , Femenino , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Masculino
10.
Fish Shellfish Immunol ; 121: 142-151, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34998986

RESUMEN

Crustacean cardioactive peptide (CCAP) is a pleiotropic neuropeptide, but its immunomodulatory role is not clear. Herein, the mud crab Scylla paramamosain provides a primitive model to study crosstalk between the neuroendocrine and immune systems. In this study, in situ hybridization showed that Sp-CCAP positive signal localized in multiple cells in the nervous tissue, while its conjugate receptor (Sp-CCAPR) positive signal mainly localized in the semigranular cells of hemocytes. The Sp-CCAP mRNA expression level in the thoracic ganglion was significantly up-regulated after lipopolysaccharide (LPS) stimulation, but the Sp-CCAP mRNA expression level was up-regulated firstly and then down-regulated after the stimulation of polyriboinosinic polyribocytidylic acid [Poly (I:C)]. After the injection of Sp-CCAP synthesis peptide, the phagocytosis ability of hemocytes was significantly higher than that of synchronous control group. Simultaneously, the mRNA expression of phagocytosis related gene (Sp-Rab5), nuclear transcription factor NF-κB homologues (Sp-Relish), C-type lectin (Sp-CTL-B), prophenoloxidase (Sp-proPO), pro-inflammatory cytokines factor (Sp-TNFSF, Sp-IL16) and antimicrobial peptides (Sp-ALF1 and Sp-ALF5) in the hemocytes were also significantly up-regulated at different time points after the injection of Sp-CCAP synthetic peptide, but Sp-TNFSF, Sp-ALF1 and Sp-ALF5 were down-regulated significantly at 24h. In addition, RNA interference of Sp-CCAP suppressed the phagocytic activity of hemocytes and inhibited the mRNA expression of Sp-Rab5, Sp-Relish, Sp-CTL-B, Sp-TNFSF, Sp-IL16 and Sp-ALF5 in the hemocytes, and ultimately weakened the ability of hemolymph bacteria clearance of mud crab. Taken together, these results revealed that CCAP induced innate immune and increased the anti-infection ability in the mud crab.


Asunto(s)
Proteínas de Artrópodos/inmunología , Braquiuros , Inmunidad Innata , Neuropéptidos , Animales , Braquiuros/genética , Braquiuros/inmunología , Interleucina-16 , Neuropéptidos/inmunología , Filogenia , Poli I-C/farmacología , ARN Mensajero/genética
11.
Nano Lett ; 21(11): 4823-4829, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34029077

RESUMEN

Three-dimensional (3D) aggregation of graphene is dramatically weak and brittle due primarily to the prevailing interlayer van der Waals interaction. In this report, motivated by the recent success in synthesis of monolayer amorphous carbon (MAC) sheets, we demonstrate that outstanding strength and large plastic-like strain can be achieved in layered 3D MAC composites. Both surface roughening and the ultracompliant nature of MACs count for the high strength and gradual failure in 3D MAC. Such properties are not seen when intact graphene or multiple stacked MACs are used as building blocks for 3D composites. This work demonstrates a counterintuitive mechanism that surface roughening due to initial defects and low rigidity may help to realize superb mechanical properties in 3D aggregation of monolayer carbon.

12.
Environ Geochem Health ; 44(11): 3875-3890, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34724146

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) such as naphthalene (Nap) and phenanthrene (Phe) are organic pollutants that are of concern because of their environmental toxicity. Adsorption is a promising process for the removal of Nap and Phe from water and soil. The riparian zone between a river and a riparian aquifer, which is rich in adsorption medium, may be important for PAH remediation. Nap and Phe may be removed from the surface water through adsorption by the media in the riparian zone. However, there is still a lack of the removal patterns and mechanisms of media in the riparian zone to remediate water contaminated by Nap and Phe simultaneously. In this study, focusing on the typical PAHs (Nap and Phe) as target pollutants, batch static adsorption and desorption experiments of Nap and Phe were carried out to explore the competitive adsorption mechanisms of Nap and Phe in the binary system. Batch dynamic adsorption experiments were conducted to ascertain the adsorption regulation of Nap and Phe in sediments during the recharge of groundwater by river water in a riparian zone. The static adsorption experiment results showed that competitive adsorption of Nap and Phe occurred, and a mutual inhibitory effect of Nap and Phe adsorption was observed in the binary system. Phe had a stronger inhibitory effect on Nap, Phe was preferentially adsorbed on the medium in binary adsorption. The results of batch dynamic experiments showed that, in terms of adsorption, the riparian zone in the study area showed stronger performance for removal of Phe than Nap. The results of this paper could be useful for alleviating Nap and Phe pollution of groundwater and developing treatment protocols for groundwater exposed to Nap and Phe.


Asunto(s)
Contaminantes Ambientales , Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Adsorción , Hidrocarburos Policíclicos Aromáticos/análisis , Naftalenos , Suelo , Agua
13.
Ecotoxicol Environ Saf ; 223: 112603, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34371457

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) such as naphthalene (Nap) and phenanthrene (Phe) are organic pollutants of concern owing to their toxicity, carcinogenicity, and teratogenicity. Biodegradation is considered the most economical and efficient process to remediate Nap and Phe. The riparian zone between a river and a riparian aquifer, which is rich in indigenous microorganisms, may be important for PAH remediation. However, few studies have evaluated the ability of indigenous microorganisms to remove Nap and Phe. In this study, focusing on the typical PAHs (Nap and Phe) as target pollutants, the genus-level community structure of Nap- and Phe-degrading bacteria was identified. Batch static and dynamic biodegradation experiments were conducted to explore the biodegradation mechanisms of Nap and Phe in the riparian zone and identify the factors influencing Nap and Phe biodegradation in the binary system (i.e., where Nap and Phe are simultaneously present). According to the genus-level community structure test results, the dominant bacterial genus in the binary system was mainly the Phe-degrading bacteria. The Nap and Phe-biodegradation percentages were 19.20% lower and 19.49% higher, respectively, in the binary system than in the unitary system. The results indicated that functional bacteria can degrade Nap and Phe, and that Nap weakly promoted Phe biodegradation. Additionally, the initial Nap and Phe concentration ratio, hydraulic gradient, and temperature affected Nap and Phe biodegradation. Dynamic biodegradation experiments showed that the biodegradation percentage decreased as the hydraulic gradient increased, and biodegradation percentage of Phe was always higher than that of Nap. According to the results of the dynamic laboratory experiments, the removal percentages of Nap and Phe by indigenous riparian-zone microorganisms were 6.21-16.73% and 13.95-24.45%, respectively. The findings in this study will be useful for alleviation of Nap and Phe pollution in groundwater and will facilitate determination of appropriate treatment measures for groundwater exposed to this type of pollution.


Asunto(s)
Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Bacterias , Biodegradación Ambiental , Naftalenos , Fenantrenos/análisis , Suelo
14.
J Environ Manage ; 299: 113648, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34479148

RESUMEN

Biodegradation is the most economical and efficient process for remediating polycyclic aromatic hydrocarbons (PAHs) such as naphthalene (Nap). Soil composition is pivotal in controlling PAH migration and transformation. Iron minerals such as siderite and magnetite are the primary components of soil and sediment and play key roles in organic pollutant biodegradation. However, it is unclear whether siderite and magnetite promote or inhibit Nap biodegradation. The effects of siderite and magnetite on Nap biodegradation were investigated through batch experiments in this study. The results indicated that siderite increased Nap biodegradation efficiency by 7.87%, whereas magnetite inhibited Nap biodegradation efficiency by 3.54%. In the presence of siderite, Nap-degrading bacteria with acid-producing effects promoted siderite dissolution via metabolic activity, resulting in an increased Fe (II) concentration in solution which accelerated the iron reduction process and promoted Nap biodegradation. In addition, the presence of iron minerals altered the genus-level community structure. Anaerobic sulfate-reducing bacteria such as Desulfosporosinus occurred in the presence of siderite, indicating that sulfate reduction occurred in advance under the influence of siderite. In the presence of magnetite, Fe (III) in iron minerals were converted to Fe (II), and under the mediation of microorganisms, Fe (II) combined with carbonate to form secondary minerals (e.g., siderite). Secondary minerals were attached to the surface of magnetite, which inhibited magnetite dissolution and reduced the efficiency of Fe (III) utilization by microorganisms. Furthermore, as the reaction proceeds, acid-producing microorganisms promoted magnetite further dissolution, resulting in a longer duration of the Fe (III) reduction process. Bacteria utilizing sulfuric acid as the terminal electron acceptor consumed organic matter more rapidly than those using iron as the terminal electron acceptor. Therefore, magnetite inhibited Nap degradation. These observations enhance our understanding of the interaction mechanisms of iron minerals, organic pollutants, and degrading bacteria during the biodegradation process.


Asunto(s)
Carbonatos , Óxido Ferrosoférrico , Biodegradación Ambiental , Compuestos Férricos , Minerales , Naftalenos , Oxidación-Reducción
15.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4111-4116, 2021 Aug.
Artículo en Zh | MEDLINE | ID: mdl-34467721

RESUMEN

Sanguinarine is the main active component of the Papaver plants, and protopine-6-hydroxylase(P6 H), involved in the sanguinarine biosynthetic pathway, can oxidize protopine to 6-hydroxyprotopine. The investigation on the diversity of P6 H genes in the medicinal Papaver plants contributes to the acquirement of P6 H with high activity to increase the biosynthesis of sanguinarine. Five P6 H genes in P. somniferum, P. orientale, and P. rhoeas were discovered based on the re-sequencing data of the Papaver species, followed by bioinformatics analysis. With the elongation factor 1α(EF-1α), which exhibits stable expression in the root and stem, as the internal reference gene, the transcription levels of P6H genes in roots and stems of the Papaver plants were detected by real-time fluorescent quantitative PCR. As indicated by the re-sequencing results, there were two genotypes of P6H in P. somniferum and P. orientale, respectively, and only one in P. rhoeas. The bioinformatics analysis showed that the P6 H proteins of the three Papaver plants contained the conserved domain cl12078, which is the characteristic of p450 supergene family, and transmembrane regions. The existence of signal peptide remained verification. Real-time fluorescent quantitative PCR results revealed that the transcription level of P6 H in roots of P. somniferum was about 1.44 times of that in stems(α=0.05). The present study confirmed genetic diversity of P6 H in the three medicinal Papaver plants, which lays a basis for the research on the biosynthesis pathway and mechanism of sanguinarine in Papaver species.


Asunto(s)
Alcaloides de Berberina , Papaver , Benzofenantridinas , Sistema Enzimático del Citocromo P-450/genética , Variación Genética , Papaver/genética
16.
Fish Shellfish Immunol ; 101: 244-251, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32272259

RESUMEN

Short neuropeptide F (sNPF), a highly conserved neuropeptide, displays pleiotropic functions on multiple aspects of physiological processes, such as feeding, metabolic stress, locomotion, circadian clock and reproduction. However, to date there has no any report on the possible immunoregulation of sNPF in crustaceans. In the present study, we found that the Sp-sNPF was mainly expressed in the nervous tissue in the mud crab Scylla paramamosain, while the sNPF receptor gene (Sp-sNPF-R) was expressed in a wide variety of tissues, including the hepatopancreas. In situ hybridization further showed that the Sp-sNPF-R positive signal mainly localized in the F-cells of the hepatopancreas. Moreover, the Sp-sNPF-R transcription could be significantly up-regulated after the challenge of bacteria-analog LPS or virus-analog Poly (I:C). Both in vitro and in vivo experiments showed that the synthetic sNPF peptide significantly increased the gene expressions of sNPF-R, nuclear factor-κB (NF-κB) signaling genes and antimicrobial peptides (AMPs) in the hepatopancreas. Simultaneously, the administration of sNPF peptide in vitro also increased the concentration of nitric oxide (NO) and the bacteriostasis of the culture medium of hepatopancreas. These results indicated that sNPF up-regulated hepatopancreas immune responses, which may bring new insight into the neuroendocrine-immune regulatory system in crustacean species, and could potentially provide a new strategy for disease prevention and control for mud crab aquaculture.


Asunto(s)
Proteínas de Artrópodos/inmunología , Braquiuros/inmunología , Hepatopáncreas/inmunología , Inmunidad Innata/genética , Neuropéptidos/inmunología , Animales , Braquiuros/genética , Femenino
17.
Int J Mol Sci ; 21(7)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32225106

RESUMEN

Oxytocin (OT)/vasopressin (VP) signaling system is important to the regulation of metabolism, osmoregulation, social behaviours, learning, and memory, while the regulatory mechanism on ovarian development is still unclear in invertebrates. In this study, Spot/vp-like and its receptor (Spot/vpr-like) were identified in the mud crab Scylla paramamosain. Spot/vp-like transcripts were mainly expressed in the nervous tissues, midgut, gill, hepatopancreas, and ovary, while Spot/vpr-like were widespread in various tissues including the hepatopancreas, ovary, and hemocytes. In situ hybridisation revealed that Spot/vp-like mRNA was mainly detected in 6-9th clusters in the cerebral ganglion, and oocytes and follicular cells in the ovary, while Spot/vpr-like was found to localise in F-cells in the hepatopancreas and oocytes in the ovary. In vitro experiment showed that the mRNA expression level of Spvg in the hepatopancreas, Spvgr in the ovary, and 17ß-estradiol (E2) content in culture medium were significantly declined with the administration of synthetic SpOT/VP-like peptide. Besides, after the injection of SpOT/VP-like peptide, it led to the significantly reduced expression of Spvg in the hepatopancreas and subduced E2 content in the haemolymph in the crabs. In brief, SpOT/VP signaling system might inhibit vitellogenesis through neuroendocrine and autocrine/paracrine modes, which may be realised by inhibiting the release of E2.


Asunto(s)
Braquiuros/metabolismo , Oxitocina/metabolismo , Vasopresinas/metabolismo , Vitelogénesis , Animales , Braquiuros/genética , Femenino , Ganglios de Invertebrados/metabolismo , Hepatopáncreas/metabolismo , Ovario/metabolismo , Oxitocina/genética , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo , Transcriptoma , Vasopresinas/genética
18.
Phys Rev Lett ; 122(4): 045501, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30768288

RESUMEN

The motion of dislocations bridges the atomistic-scale deformation events with the macroscopic strength and ductility of crystalline metals. In particular, screw dislocations, whose Burgers vector is parallel to the line, play crucial roles on plastic flow. Nevertheless, their speed limit and its stress dependence remain controversial. Using large-scale molecular dynamics simulations, we reveal that full screw dislocations and twinning partial screw-type dislocations can glide steadily at the speed of shear wave velocity. Such a scenario is excluded in existing theories due to energy dissipation singularity. We conclude that both types of screw dislocations can move supersonically. We further observe that the motion of a screw dislocation also depends on the shear stress components, which do not contribute to the resolved shear stress (RSS), in contrast to the conventional Schmid's law, which states that the motion of a dislocation is determined by the RSS.

19.
J Am Chem Soc ; 140(38): 11935-11941, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30175921

RESUMEN

We study the roles of graphene acting as a buffer layer for growth of an AlN film on a sapphire substrate. Graphene can reduce the density of AlN nuclei but increase the growth rate for an individual nucleus at the initial growth stage. This can lead to the reduction of threading dislocations evolved at the coalescence boundaries. The graphene interlayer also weakens the interaction between AlN and sapphire and accommodates their large mismatch in the lattice and thermal expansion coefficients; thus, the compressive strain in AlN and the tensile strain in sapphire are largely relaxed. The effective relaxation of strain further leads to a low density of defects in the AlN films. These findings reveal the roles of graphene in III-nitride growth and offer valuable insights into the efficient applications of graphene in the light-emitting diode industry.

20.
Proc Natl Acad Sci U S A ; 112(47): 14501-5, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26554017

RESUMEN

Grain refinement can make conventional metals several times stronger, but this comes at dramatic loss of ductility. Here we report a heterogeneous lamella structure in Ti produced by asymmetric rolling and partial recrystallization that can produce an unprecedented property combination: as strong as ultrafine-grained metal and at the same time as ductile as conventional coarse-grained metal. It also has higher strain hardening than coarse-grained Ti, which was hitherto believed impossible. The heterogeneous lamella structure is characterized with soft micrograined lamellae embedded in hard ultrafine-grained lamella matrix. The unusual high strength is obtained with the assistance of high back stress developed from heterogeneous yielding, whereas the high ductility is attributed to back-stress hardening and dislocation hardening. The process discovered here is amenable to large-scale industrial production at low cost, and might be applicable to other metal systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA