Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 28(7): 2233-2242, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28525544

RESUMEN

Measuring the spatiotemporal complexity of cortical responses to direct perturbations provides a reliable index of the brain's capacity for consciousness in humans under both physiological and pathological conditions. Upon loss of consciousness, the complex pattern of causal interactions observed during wakefulness collapses into a stereotypical slow wave, suggesting that cortical bistability may play a role. Bistability is mainly expressed in the form of slow oscillations, a default pattern of activity that emerges from cortical networks in conditions of functional or anatomical disconnection. Here, we employ an in vitro model to understand the relationship between bistability and complexity in cortical circuits. We adapted the perturbational complexity index applied in humans to electrically stimulated cortical slices under different neuromodulatory conditions. At this microscale level, we demonstrate that perturbational complexity can be effectively modulated by pharmacological reduction of bistability and, albeit to a lesser extent, by enhancement of excitability, providing mechanistic insights into the macroscale measurements performed in humans.


Asunto(s)
Estado de Conciencia/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Corteza Visual/citología , Corteza Visual/fisiología , Algoritmos , Animales , Biofisica , Estimulación Eléctrica , Entropía , Hurones , Técnicas In Vitro , Análisis Espectral
2.
Adv Sci (Weinh) ; 8(14): e2005027, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34018704

RESUMEN

The ability to control neural activity is essential for research not only in basic neuroscience, as spatiotemporal control of activity is a fundamental experimental tool, but also in clinical neurology for therapeutic brain interventions. Transcranial-magnetic, ultrasound, and alternating/direct current (AC/DC) stimulation are some available means of spatiotemporal controlled neuromodulation. There is also light-mediated control, such as optogenetics, which has revolutionized neuroscience research, yet its clinical translation is hampered by the need for gene manipulation. As a drug-based light-mediated control, the effect of a photoswitchable muscarinic agonist (Phthalimide-Azo-Iper (PAI)) on a brain network is evaluated in this study. First, the conditions to manipulate M2 muscarinic receptors with light in the experimental setup are determined. Next, physiological synchronous emergent cortical activity consisting of slow oscillations-as in slow wave sleep-is transformed into a higher frequency pattern in the cerebral cortex, both in vitro and in vivo, as a consequence of PAI activation with light. These results open the way to study cholinergic neuromodulation and to control spatiotemporal patterns of activity in different brain states, their transitions, and their links to cognition and behavior. The approach can be applied to different organisms and does not require genetic manipulation, which would make it translational to humans.


Asunto(s)
Encéfalo/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Animales , Hurones , Ratones , Ratones Endogámicos C57BL , Modelos Animales
3.
Sci Rep ; 8(1): 16717, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30425252

RESUMEN

The understanding of brain processing requires monitoring and exogenous modulation of neuronal ensembles. To this end, it is critical to implement equipment that ideally provides highly accurate, low latency recording and stimulation capabilities, that is functional for different experimental preparations and that is highly compact and mobile. To address these requirements, we designed a small ultra-flexible multielectrode array and combined it with an ultra-compact electronic system. The device consists of a polyimide microelectrode array (8 µm thick and with electrodes measuring as low as 10 µm in diameter) connected to a miniaturized electronic board capable of amplifying, filtering and digitalizing neural signals and, in addition, of stimulating brain tissue. To evaluate the system, we recorded slow oscillations generated in the cerebral cortex network both from in vitro slices and from in vivo anesthetized animals, and we modulated the oscillatory pattern by means of electrical and visual stimulation. Finally, we established a preliminary closed-loop algorithm in vitro that exploits the low latency of the electronics (<0.5 ms), thus allowing monitoring and modulating emergent cortical activity in real time to a desired target oscillatory frequency.


Asunto(s)
Encéfalo/fisiología , Estimulación Eléctrica , Electrofisiología/instrumentación , Encéfalo/citología , Cinética , Microelectrodos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA