Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 76(5): 826-837.e11, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31607545

RESUMEN

The CRISPR effector Cas13 could be an effective antiviral for single-stranded RNA (ssRNA) viruses because it programmably cleaves RNAs complementary to its CRISPR RNA (crRNA). Here, we computationally identify thousands of potential Cas13 crRNA target sites in hundreds of ssRNA viral species that can potentially infect humans. We experimentally demonstrate Cas13's potent activity against three distinct ssRNA viruses: lymphocytic choriomeningitis virus (LCMV); influenza A virus (IAV); and vesicular stomatitis virus (VSV). Combining this antiviral activity with Cas13-based diagnostics, we develop Cas13-assisted restriction of viral expression and readout (CARVER), an end-to-end platform that uses Cas13 to detect and destroy viral RNA. We further screen hundreds of crRNAs along the LCMV genome to evaluate how conservation and target RNA nucleotide content influence Cas13's antiviral activity. Our results demonstrate that Cas13 can be harnessed to target a wide range of ssRNA viruses and CARVER's potential broad utility for rapid diagnostic and antiviral drug development.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Marcación de Gen/métodos , Estabilidad del ARN , Virus ARN/enzimología , ARN Viral/metabolismo , Células A549 , Animales , Proteínas Asociadas a CRISPR/genética , Chlorocebus aethiops , Perros , Escherichia coli/enzimología , Escherichia coli/genética , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Virus ARN/genética , ARN Viral/genética , Células Vero
2.
Proc Natl Acad Sci U S A ; 121(31): e2314760121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39052834

RESUMEN

Transceptors, solute transporters that facilitate intracellular entry of molecules and also initiate intracellular signaling events, have been primarily studied in lower-order species. Ammonia, a cytotoxic endogenous metabolite, is converted to urea in hepatocytes for urinary excretion in mammals. During hyperammonemia, when hepatic metabolism is impaired, nonureagenic ammonia disposal occurs primarily in skeletal muscle. Increased ammonia uptake in skeletal muscle is mediated by a membrane-bound, 12 transmembrane domain solute transporter, Rhesus blood group-associated B glycoprotein (RhBG). We show that in addition to its transport function, RhBG interacts with myeloid differentiation primary response-88 (MyD88) to initiate an intracellular signaling cascade that culminates in activation of NFκB. We also show that ammonia-induced MyD88 signaling is independent of the canonical toll-like receptor-initiated mechanism of MyD88-dependent NFκB activation. In silico, in vitro, and in situ experiments show that the conserved cytosolic J-domain of the RhBG protein interacts with the Toll-interleukin-1 receptor (TIR) domain of MyD88. In skeletal muscle from human patients, human-induced pluripotent stem cell-derived myotubes, and myobundles show an interaction of RhBG-MyD88 during hyperammonemia. Using complementary experimental and multiomics analyses in murine myotubes and mice with muscle-specific RhBG or MyD88 deletion, we show that the RhBG-MyD88 interaction is essential for the activation of NFkB but not ammonia transport. Our studies show a paradigm of substrate-dependent regulation of transceptor function with the potential for modulation of cellular responses in mammalian systems by decoupling transport and signaling functions of transceptors.


Asunto(s)
Amoníaco , Proteínas de Transporte de Membrana , Factor 88 de Diferenciación Mieloide , FN-kappa B , Transducción de Señal , Animales , Humanos , Ratones , Amoníaco/metabolismo , Hiperamonemia/metabolismo , Hiperamonemia/genética , Ratones Noqueados , Músculo Esquelético/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , FN-kappa B/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
3.
J Physiol ; 602(12): 2763-2806, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38761133

RESUMEN

Hypoxia-inducible factor (HIF)-1α is continuously synthesized and degraded in normoxia. During hypoxia, HIF1α stabilization restricts cellular/mitochondrial oxygen utilization. Cellular stressors can stabilize HIF1α even during normoxia. However, less is known about HIF1α function(s) and sex-specific effects during normoxia in the basal state. Since skeletal muscle is the largest protein store in mammals and protein homeostasis has high energy demands, we determined HIF1α function at baseline during normoxia in skeletal muscle. Untargeted multiomics data analyses were followed by experimental validation in differentiated murine myotubes with loss/gain of function and skeletal muscle from mice without/with post-natal muscle-specific Hif1a deletion (Hif1amsd). Mitochondrial oxygen consumption studies using substrate, uncoupler, inhibitor, titration protocols; targeted metabolite quantification by gas chromatography-mass spectrometry; and post-mitotic senescence markers using biochemical assays were performed. Multiomics analyses showed enrichment in mitochondrial and cell cycle regulatory pathways in Hif1a deleted cells/tissue. Experimentally, mitochondrial oxidative functions and ATP content were higher with less mitochondrial free radical generation with Hif1a deletion. Deletion of Hif1a also resulted in higher concentrations of TCA cycle intermediates and HIF2α proteins in myotubes. Overall responses to Hif1amsd were similar in male and female mice, but changes in complex II function, maximum respiration, Sirt3 and HIF1ß protein expression and muscle fibre diameter were sex-dependent. Adaptive responses to hypoxia are mediated by stabilization of constantly synthesized HIF1α. Despite rapid degradation, the presence of HIF1α during normoxia contributes to lower mitochondrial oxidative efficiency and greater post-mitotic senescence in skeletal muscle. In vivo responses to HIF1α in skeletal muscle were differentially impacted by sex. KEY POINTS: Hypoxia-inducible factor -1α (HIF1α), a critical transcription factor, undergoes continuous synthesis and proteolysis, enabling rapid adaptive responses to hypoxia by reducing mitochondrial oxygen consumption. In mammals, skeletal muscle is the largest protein store which is determined by a balance between protein synthesis and breakdown and is sensitive to mitochondrial oxidative function. To investigate the functional consequences of transient HIF1α expression during normoxia in the basal state, myotubes and skeletal muscle from male and female mice with HIF1α knockout were studied using complementary multiomics, biochemical and metabolite assays. HIF1α knockout altered the electron transport chain, mitochondrial oxidative function, signalling molecules for protein homeostasis, and post-mitotic senescence markers, some of which were differentially impacted by sex. The cost of rapid adaptive responses mediated by HIF1α is lower mitochondrial oxidative efficiency and post-mitotic senescence during normoxia.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Mitocondrias Musculares , Músculo Esquelético , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Femenino , Masculino , Músculo Esquelético/metabolismo , Ratones , Mitocondrias Musculares/metabolismo , Caracteres Sexuales , Homeostasis , Fibras Musculares Esqueléticas/metabolismo , Ratones Endogámicos C57BL , Consumo de Oxígeno/fisiología
4.
Am J Gastroenterol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018024

RESUMEN

BACKGROUND: One of the primary goals of the Liver Cirrhosis Network (LCN) is to develop a cohort study to better understand and predict the risk of hepatic decompensation and other clinical and patient-reported outcomes among patients with Child A cirrhosis. METHODS: The LCN consists of a Scientific Data Coordinating Center (SDCC) and 10 clinical centers whose investigators populate multiple committees. The LCN Definitions and Measurements Committee developed preliminary definitions of cirrhosis and its complications by literature review, expert opinion, and reviewing definition documents developed by other organizations. The Cohort Committee developed the study protocol with the input of the steering committee. RESULTS: The LCN developed a prospective cohort study to describe and predict the rates of incident clinical events pertaining to first decompensation and patient reported outcomes. The LCN developed a pragmatic definition of compensated cirrhosis incorporating clinical, laboratory, imaging, and histological criteria. Definitions of incident and recompensated ascites, overt hepatic encephalopathy, variceal hemorrhage, bleeding due to portal gastropathy, and hepatocellular carcinoma were also codified. CONCLUSION: The LCN Cohort Study design will inform the natural history of cirrhosis in contemporary patients with compensated cirrhosis. The LCN Definitions and Measures Committee developed criteria for the definition of cirrhosis to standardize entry into this multi-center cohort study and standardized criteria for liver-related outcome measures. This effort has produced definitions intended to be both sensitive and specific as well as easily operationalized by study staff such that outcomes critical to the LCN cohort are identified and reported in an accurate and generalizable fashion.

5.
Hepatology ; 77(6): 1983-1997, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36645226

RESUMEN

BACKGROUND AND AIMS: Interferon (IFN) signaling is critical to the pathogenesis of alcohol-associated hepatitis (AH), yet the mechanisms for activation of this system are elusive. We hypothesize that host-derived 5S rRNA pseudogene (RNA5SP) transcripts regulate IFN production and modify immunity in AH. APPROACH AND RESULTS: Mining of transcriptomic datasets revealed that in patients with severe alcohol-associated hepatitis (sAH), hepatic expression of genes regulated by IFNs was perturbed and gene sets involved in IFN production were enriched. RNA5SP transcripts were also increased and correlated with expression of type I IFNs. Interestingly, inflammatory mediators upregulated in sAH, but not in other liver diseases, were positively correlated with certain RNA5SP transcripts. Real-time quantitative PCR demonstrated that RNA5SP transcripts were upregulated in peripheral blood mononuclear cells (PBMCs) from patients with sAH. In sAH livers, increased 5S rRNA and reduced nuclear MAF1 (MAF1 homolog, negative regulator of RNA polymerase III) protein suggested a higher activity of RNA polymerase III (Pol III); inhibition of Pol III reduced RNA5SP expression in monocytic THP-1 cells. Expression of several RNA5SP transcript-interacting proteins was downregulated in sAH, potentially unmasking transcripts to immunosensors. Indeed, siRNA knockdown of interacting proteins potentiated the immunostimulatory activity of RNA5SP transcripts. Molecular interaction and cell viability assays demonstrated that RNA5SP transcripts adopted Z-conformation and contributed to ZBP1-mediated caspase-independent cell death. CONCLUSIONS: Increased expression and binding availability of RNA5SP transcripts was associated with hepatic IFN production and inflammation in sAH. These data identify RNA5SP transcripts as a potential target to mitigate inflammation and hepatocellular injury in AH.


Asunto(s)
Técnicas Biosensibles , Hepatitis Alcohólica , Interferón Tipo I , Humanos , ARN Ribosómico 5S/genética , ARN Ribosómico 5S/metabolismo , Seudogenes , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Leucocitos Mononucleares , Inmunoensayo , Inflamación/genética , Hepatitis Alcohólica/genética , Interferón Tipo I/genética
6.
Hepatology ; 77(3): 902-919, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35689613

RESUMEN

BACKGROUND AND AIMS: Mixed lineage kinase domain-like pseudokinase (MLKL), a key terminal effector of necroptosis, also plays a role in intracellular vesicle trafficking that is critical for regulating liver inflammation and injury in alcohol-associated liver disease (ALD). Although receptor interacting protein kinase 3 (Rip3)-/- mice are completely protected from ethanol-induced liver injury, Mlkl-/- mice are only partially protected. Therefore, we hypothesized that cell-specific functions of MLKL may contribute to ethanol-induced injury. APPROACH AND RESULTS: Bone marrow transplants between Mlkl-/- mice and littermates were conducted to distinguish the role of myeloid versus nonmyeloid Mlkl in the Gao-binge model of ALD. Ethanol-induced hepatic injury, steatosis, and inflammation were exacerbated in Mlkl-/- →wild-type (WT) mice, whereas Mlkl deficiency in nonmyeloid cells (WT→ Mlkl-/- ) had no effect on Gao-binge ethanol-induced injury. Importantly, Mlkl deficiency in myeloid cells exacerbated ethanol-mediated bacterial burden and accumulation of immune cells in livers. Mechanistically, challenging macrophages with lipopolysaccharide (LPS) induced signal transducer and activator of transcription 1-mediated expression and phosphorylation of MLKL, as well as translocation and oligomerization of MLKL to intracellular compartments, including phagosomes and lysosomes but not plasma membrane. Importantly, pharmacological or genetic inhibition of MLKL suppressed the phagocytic capability of primary mouse Kupffer cells (KCs) at baseline and in response to LPS with/without ethanol as well as peripheral monocytes isolated from both healthy controls and patients with alcohol-associated hepatitis. Further, in vivo studies revealed that KCs of Mlkl-/- mice phagocytosed fewer bioparticles than KCs of WT mice. CONCLUSION: Together, these data indicate that myeloid MLKL restricts ethanol-induced liver inflammation and injury by regulating hepatic immune cell homeostasis and macrophage phagocytosis.


Asunto(s)
Hepatitis Alcohólica , Hepatopatías Alcohólicas , Ratones , Animales , Lipopolisacáridos/metabolismo , Hepatopatías Alcohólicas/metabolismo , Hígado/metabolismo , Etanol/toxicidad , Hepatitis Alcohólica/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Fagocitosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Ratones Endogámicos C57BL , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
7.
BMC Pulm Med ; 24(1): 186, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632546

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disorder with systemic consequences that can cause a muscle loss phenotype (MLP), which is characterized by the loss of muscle mass, muscle strength, or loss of both muscle and fat mass. There are limited data comparing the individual traits of MLP with clinical outcomes in a large unbiased cohort of COPD patients. Our aim was to determine the proportion of patients who met criteria for MLP in an unbiased sample of COPD patients at the population-level. We also determined if specific MLP features were associated with all-cause and COPD-related mortality. METHODS: A retrospective population-based cohort analysis of the UK Biobank was performed. COPD was defined by a FEV1/FVC ratio < 0.7, physician established diagnosis of COPD, or those with a COPD-related hospitalization before baseline assessment. MLP included one or more of the following: 1) Low fat-free mass index (FFMI) on bioelectric impedance analysis (BIA) or 2) Appendicular skeletal muscle index (ASMI) on BIA, 3) Low muscle strength defined by handgrip strength (HGS), or 4) Low muscle and fat mass based on body mass index (BMI). Cox regression was used to determine the association between MLP and all-cause or COPD-related mortality. All models were adjusted for sex, age at assessment, ethnicity, BMI, alcohol use, smoking status, prior cancer diagnosis and FEV1/FVC ratio. RESULTS: There were 55,782 subjects (56% male) with COPD followed for a median of 70.1 months with a mean(± SD) age at assessment of 59 ± 7.5 years, and FEV1% of 79.2 ± 18.5. Most subjects had mild (50.4%) or moderate (42.8%) COPD. Many patients had evidence of a MLP, which was present in 53.4% of COPD patients (34% by ASMI, 26% by HGS). Of the 5,608 deaths in patients diagnosed with COPD, 907 were COPD-related. After multivariate adjustment, COPD subjects with MLP had a 30% higher hazard-ratio for all-cause death and 70% higher hazard-ratio for COPD-related death. CONCLUSIONS: Evidence of MLP is common in a large population-based cohort of COPD and is associated with higher risk for all-cause and COPD-related mortality.


Asunto(s)
Fuerza de la Mano , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Masculino , Femenino , Estudios Retrospectivos , Biobanco del Reino Unido , Bancos de Muestras Biológicas , Músculo Esquelético , Fenotipo
8.
J Physiol ; 601(3): 567-606, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36533558

RESUMEN

Nocturnal hypoxaemia, which is common in chronic obstructive pulmonary disease (COPD) patients, is associated with skeletal muscle loss or sarcopenia, which contributes to adverse clinical outcomes. In COPD, we have defined this as prolonged intermittent hypoxia (PIH) because the duration of hypoxia in skeletal muscle occurs through the duration of sleep followed by normoxia during the day, in contrast to recurrent brief hypoxic episodes during obstructive sleep apnoea (OSA). Adaptive cellular responses to PIH are not known. Responses to PIH induced by three cycles of 8 h hypoxia followed by 16 h normoxia were compared to those during chronic hypoxia (CH) or normoxia for 72 h in murine C2C12 and human inducible pluripotent stem cell-derived differentiated myotubes. RNA sequencing followed by downstream analyses were complemented by experimental validation of responses that included both unique and shared perturbations in ribosomal and mitochondrial function during PIH and CH. A sarcopenic phenotype characterized by decreased myotube diameter and protein synthesis, and increased phosphorylation of eIF2α (Ser51) by eIF2α kinase, and of GCN-2 (general controlled non-derepressed-2), occurred during both PIH and CH. Mitochondrial oxidative dysfunction, disrupted supercomplex assembly, lower activity of Complexes I, III, IV and V, and reduced intermediary metabolite concentrations occurred during PIH and CH. Decreased mitochondrial fission occurred during CH. Physiological relevance was established in skeletal muscle of mice with COPD that had increased phosphorylation of eIF2α, lower protein synthesis and mitochondrial oxidative dysfunction. Molecular and metabolic responses with PIH suggest an adaptive exhaustion with failure to restore homeostasis during normoxia. KEY POINTS: Sarcopenia or skeletal muscle loss is one of the most frequent complications that contributes to mortality and morbidity in patients with chronic obstructive pulmonary disease (COPD). Unlike chronic hypoxia, prolonged intermittent hypoxia is a frequent, underappreciated and clinically relevant model of hypoxia in patients with COPD. We developed a novel, in vitro myotube model of prolonged intermittent hypoxia with molecular and metabolic perturbations, mitochondrial oxidative dysfunction, and consequent sarcopenic phenotype. In vivo studies in skeletal muscle from a mouse model of COPD shared responses with our myotube model, establishing the pathophysiological relevance of our studies. These data lay the foundation for translational studies in human COPD to target prolonged, nocturnal hypoxaemia to prevent sarcopenia in these patients.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Sarcopenia , Humanos , Ratones , Animales , Sarcopenia/metabolismo , Proteostasis , Músculo Esquelético/metabolismo , Hipoxia/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones
9.
Clin Infect Dis ; 76(3): e400-e408, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35616119

RESUMEN

BACKGROUND: The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible in vaccinated and unvaccinated populations. The dynamics that govern its establishment and propensity toward fixation (reaching 100% frequency in the SARS-CoV-2 population) in communities remain unknown. Here, we describe the dynamics of Omicron at 3 institutions of higher education (IHEs) in the greater Boston area. METHODS: We use diagnostic and variant-specifying molecular assays and epidemiological analytical approaches to describe the rapid dominance of Omicron following its introduction into 3 IHEs with asymptomatic surveillance programs. RESULTS: We show that the establishment of Omicron at IHEs precedes that of the state and region and that the time to fixation is shorter at IHEs (9.5-12.5 days) than in the state (14.8 days) or region. We show that the trajectory of Omicron fixation among university employees resembles that of students, with a 2- to 3-day delay. Finally, we compare cycle threshold values in Omicron vs Delta variant cases on college campuses and identify lower viral loads among college affiliates who harbor Omicron infections. CONCLUSIONS: We document the rapid takeover of the Omicron variant at IHEs, reaching near-fixation within the span of 9.5-12.5 days despite lower viral loads, on average, than the previously dominant Delta variant. These findings highlight the transmissibility of Omicron, its propensity to rapidly dominate small populations, and the ability of robust asymptomatic surveillance programs to offer early insights into the dynamics of pathogen arrival and spread.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Universidades , Boston
10.
J Pediatr Orthop ; 43(5): e337-e342, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36952248

RESUMEN

BACKGROUND: This study assesses intraoperative efficacy, accuracy, and complications of pedicle screw placement using robotic-assisted navigation (RAN) in pediatric spine surgery. METHODS: A retrospective review of patients who underwent spine deformity surgery using RAN at a single pediatric institution from 2019 to 2021 was conducted. Patient demographics, perioperative metrics, screw execution and accuracy, technical difficulties, and other outcomes were summarized. In cases with postoperative computed tomography scans, screws were classified using the Gertzbein and Robbins classification scale. Fisher exact tests were used to assess the relationship between procedural changes and lateral screw malposition. RESULTS: One hundred sixty-two cases with an average patient age of 15.1 years (range, 4 to 31 y) were reviewed. The most common diagnosis was adolescent idiopathic scoliosis (n=80) with an average major curve of 65 degrees. Of 1467 screws attempted, 1461 were executed successfully (99.6%). All failures were in Type D pedicles and were lateral deviations recognized with routine intraoperative fluoroscopy. In cases with postoperative computed tomography imaging, 100% of screws (n=197) were placed with complete containment (Grade A). Remaining screws were graded as accurate by mirroring fluoroscopy and planned computer software positions. In 4% of cases, loss of registration was detected by a safety check before drilling at the planned level. There were no neurological deficits or returns to the operating room. Two changes occurred as part of the learning curve associated with this technique. (1) Adoption of a high-speed navigated drill: Change 1 (last 74 cases). (2) Drilling all pilot holes robotically first, then placing screws within the robotically established tracts to avoid motion and subsequent registration disruption: Change 2 (last 39 cases). Change 1 was less likely to result in screw malposition as no screws skived lateral with the technique ( P =0.03). Change 2 trended toward statistical significance for avoidance of screw malposition and loss of registration, as no loss of registration occurred after adopting this technique. CONCLUSION: This study highlights the safety and screw accuracy associated with the use of RAN in pediatric patients. LEVEL OF EVIDENCE: Level III.


Asunto(s)
Tornillos Pediculares , Escoliosis , Fusión Vertebral , Cirugía Asistida por Computador , Adolescente , Humanos , Niño , Preescolar , Adulto Joven , Adulto , Cirugía Asistida por Computador/métodos , Columna Vertebral/cirugía , Escoliosis/diagnóstico por imagen , Escoliosis/cirugía , Fluoroscopía , Estudios Retrospectivos , Fusión Vertebral/métodos
11.
J Biol Chem ; 297(3): 101023, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34343564

RESUMEN

Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.


Asunto(s)
Genómica , Hiperamonemia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteómica , Transcriptoma , Animales , Citometría de Flujo , Humanos , Hiperamonemia/genética , Immunoblotting/métodos , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados
12.
Hepatology ; 73(5): 1892-1908, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32799332

RESUMEN

BACKGROUND AND AIMS: Despite the high clinical significance of sarcopenia in alcohol-associated cirrhosis, there are currently no effective therapies because the underlying mechanisms are poorly understood. We determined the mechanisms of ethanol-induced impaired phosphorylation of mechanistic target of rapamycin complex 1 (mTORC1) and adenosine monophosphate-activated protein kinase (AMPK) with consequent dysregulated skeletal muscle protein homeostasis (balance between protein synthesis and breakdown). APPROACH AND RESULTS: Differentiated murine myotubes, gastrocnemius muscle from mice with loss and gain of function of regulatory genes following ethanol treatment, and skeletal muscle from patients with alcohol-associated cirrhosis were used. Ethanol increases skeletal muscle autophagy by dephosphorylating mTORC1, circumventing the classical kinase regulation by protein kinase B (Akt). Concurrently and paradoxically, ethanol exposure results in dephosphorylation and inhibition of AMPK, an activator of autophagy and inhibitor of mTORC1 signaling. However, AMPK remains inactive with ethanol exposure despite lower cellular and tissue adenosine triphosphate, indicating a "pseudofed" state. We identified protein phosphatase (PP) 2A as a key mediator of ethanol-induced signaling and functional perturbations using loss and gain of function studies. Ethanol impairs binding of endogenous inhibitor of PP2A to PP2A, resulting in methylation and targeting of PP2A to cause dephosphorylation of mTORC1 and AMPK. Activity of phosphoinositide 3-kinase-γ (PI3Kγ), a negative regulator of PP2A, was decreased in response to ethanol. Ethanol-induced molecular and phenotypic perturbations in wild-type mice were observed in PI3Kγ-/- mice even at baseline. Importantly, overexpressing kinase-active PI3Kγ but not the kinase-dead mutant reversed ethanol-induced molecular perturbations. CONCLUSIONS: Our study describes the mechanistic underpinnings for ethanol-mediated dysregulation of protein homeostasis by PP2A that leads to sarcopenia with a potential for therapeutic approaches by targeting the PI3Kγ-PP2A axis.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Hepatopatías Alcohólicas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína Fosfatasa 2/metabolismo , Sarcopenia/etiología , Animales , Femenino , Homeostasis , Humanos , Inmunoprecipitación , Hepatopatías Alcohólicas/complicaciones , Hepatopatías Alcohólicas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mioblastos/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patología
13.
J Cell Sci ; 132(22)2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31653782

RESUMEN

The maintenance of mitochondrial respiratory function and homeostasis is essential to human health. Here, we identify condensin II subunits as novel regulators of mitochondrial respiration and mitochondrial stress responses. Condensin II is present in the nucleus and cytoplasm. While the effects of condensin II depletion on nuclear genome organization are well studied, the effects on essential cytoplasmic and metabolic processes are not as well understood. Excitingly, we observe that condensin II chromosome-associated protein (CAP) subunits individually localize to different regions of mitochondria, suggesting possible mitochondrial-specific functions independent from those mediated by the canonical condensin II holocomplex. Changes in cellular ATP levels and mitochondrial respiration are observed in condensin II CAP subunit-deficient cells. Surprisingly, we find that loss of NCAPD3 also sensitizes cells to oxidative stress. Together, these studies identify new, and possibly independent, roles for condensin II CAP subunits in preventing mitochondrial damage and dysfunction. These findings reveal a new area of condensin protein research that could contribute to the identification of targets to treat diseases where aberrant function of condensin II proteins is implicated.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Complejos Multiproteicos/metabolismo , Estrés Oxidativo/fisiología , Consumo de Oxígeno/fisiología , Adenosina Trifosfatasas/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas de Unión al ADN/genética , Drosophila , Células HT29 , Humanos , Complejos Multiproteicos/genética , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Smegmamorpha
14.
Cell Physiol Biochem ; 55(1): 91-116, 2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33543862

RESUMEN

BACKGROUND/AIMS: Signaling and metabolic perturbations contribute to dysregulated skeletal muscle protein homeostasis and secondary sarcopenia in response to a number of cellular stressors including ethanol exposure. Using an innovative multiomics-based curating of unbiased data, we identified molecular and metabolic therapeutic targets and experimentally validated restoration of protein homeostasis in an ethanol-fed mouse model of liver disease. METHODS: Studies were performed in ethanol-treated differentiated C2C12 myotubes and physiological relevance established in an ethanol-fed mouse model of alcohol-related liver disease (mALD) or pair-fed control C57BL/6 mice. Transcriptome and proteome from ethanol treated-myotubes and gastrocnemius muscle from mALD and pair-fed mice were analyzed to identify target pathways and molecules. Readouts including signaling responses and autophagy markers by immunoblots, mitochondrial oxidative function and free radical generation, and metabolic studies by gas chromatography-mass spectrometry and sarcopenic phenotype by imaging. RESULTS: Multiomics analyses showed that ethanol impaired skeletal muscle mTORC1 signaling, mitochondrial oxidative pathways, including intermediary metabolite regulatory genes, interleukin-6, and amino acid degradation pathways are ß-hydroxymethyl-butyrate targets. Ethanol decreased mTORC1 signaling, increased autophagy flux, impaired mitochondrial oxidative function with decreased tricarboxylic acid cycle intermediary metabolites, ATP synthesis, protein synthesis and myotube diameter that were reversed by HMB. Consistently, skeletal muscle from mALD had decreased mTORC1 signaling, reduced fractional and total muscle protein synthesis rates, increased autophagy markers, lower intermediary metabolite concentrations, and lower muscle mass and fiber diameter that were reversed by ß-hydroxymethyl-butyrate treatment. CONCLUSION: An innovative multiomics approach followed by experimental validation showed that ß-hydroxymethyl-butyrate restores muscle protein homeostasis in liver disease.


Asunto(s)
Etanol/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Hidroxibutiratos/farmacología , Hepatopatías Alcohólicas , Deficiencias en la Proteostasis , Sarcopenia , Transducción de Señal/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Etanol/farmacología , Femenino , Genómica , Hepatopatías Alcohólicas/complicaciones , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Ratones , Deficiencias en la Proteostasis/dietoterapia , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Sarcopenia/tratamiento farmacológico , Sarcopenia/etiología , Sarcopenia/metabolismo , Sarcopenia/patología
15.
Respirology ; 26(1): 62-71, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32542761

RESUMEN

BACKGROUND AND OBJECTIVE: COPD is the third most common cause of death worldwide and fourth most common in the United States. In hospitalized patients with COPD, mortality, morbidity and healthcare resource utilization are high. Skeletal muscle loss is frequent in patients with COPD. However, the impact of muscle loss on adverse outcomes has not been systematically evaluated. We tested the hypothesis that patients hospitalized for COPD exacerbation with, compared to those without, a secondary diagnosis of muscle loss phenotype (all ICD-9 codes associated with muscle loss including cachexia) will have higher mortality and cost of care. METHODS: The NIS database of hospitalized patients in 2011 (1 January-31 December) in the United States was used. The impact of a muscle loss phenotype on in-hospital mortality, LOS and cost of care for each of the 174 808 hospitalizations for COPD exacerbations was analysed. RESULTS: Of the subjects admitted for a COPD exacerbation, 12 977 (7.4%) had a secondary diagnosis of muscle loss phenotype. A diagnosis of muscle loss phenotype was associated with significantly higher in-hospital mortality (14.6% vs 5.7%, P < 0.001), LOS (13.3 + 17.1 vs 5.7 + 7.6, P < 0.001) and median hospital charge per patient ($13 947 vs $6610, P < 0.001). Multivariate regression analysis showed that muscle loss phenotype increased mortality by 111% (95% CI: 2.0-2.2, P < 0.001), LOS by 68.4% (P < 0.001) and the direct cost of care by 83.7% (P < 0.001) compared to those without muscle loss. CONCLUSION: In-hospital mortality, LOS and healthcare costs are higher in patients with COPD exacerbations and a muscle loss phenotype.


Asunto(s)
Músculos/patología , Enfermedad Pulmonar Obstructiva Crónica/mortalidad , Anciano , Progresión de la Enfermedad , Femenino , Costos de la Atención en Salud , Hospitalización , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Morbilidad , Análisis Multivariante , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/economía , Factores de Riesgo , Estados Unidos/epidemiología
16.
COPD ; 18(2): 191-200, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33736550

RESUMEN

Patients with advanced chronic obstructive pulmonary disease (COPD) develop skeletal muscle loss (sarcopenia) that is associated with adverse clinical outcomes including mortality. We evaluated if thoracic muscle area is associated with clinical outcomes in patients with severe COPD. We analyzed consecutive patients with severe COPD undergoing evaluation for lung volume reduction from 2015 to 2019 (n = 117) compared to current and former smoking controls undergoing lung cancer screening with normal lung function (n = 41). Quantitative assessments of pectoralis muscle (PM) and erector spinae muscle (ESM) cross sectional area (CSA) were related to clinical outcomes including composite endpoints. Our results showed a reduction in PM CSA but not ESM CSA was associated with the severity of GOLD stage of COPD. Current smokers demonstrated reduced PM CSA which was similar to that in COPD patients who were GOLD stages 3 and 4. PM CSA was associated positively with FEV1, FEV1% predicted, FVC, DLCO, and FEV1/FVC ratio, and was associated negatively with the degree of radiologic emphysema. ESM correlated positively with DLCO, RV/TLC (a marker of hyperinflation), and correlated negatively with radiologic severity of emphysema. Kaplan-Meier analysis showed that reductions in PM but not ESM CSA was associated with the composite end point of mortality, need for lung volume reduction, or lung transplant. In conclusion, in well-characterized patients with severe COPD referred for lung volume reduction, PM CSA correlated with severity of lung disease, mortality, and need for advanced therapies. In addition to predicting clinical outcomes, targeting sarcopenia is a potential therapeutic approach in patients with severe COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Detección Precoz del Cáncer , Enfisema , Volumen Espiratorio Forzado , Humanos , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Músculos Pectorales/diagnóstico por imagen , Neumonectomía , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfisema Pulmonar , Sarcopenia/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X
17.
J Biol Chem ; 294(18): 7231-7244, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30872403

RESUMEN

Ethanol causes dysregulated muscle protein homeostasis while simultaneously causing hepatocyte injury. Because hepatocytes are the primary site for physiological disposal of ammonia, a cytotoxic cellular metabolite generated during a number of metabolic processes, we determined whether hyperammonemia aggravates ethanol-induced muscle loss. Differentiated murine C2C12 myotubes, skeletal muscle from pair-fed or ethanol-treated mice, and human patients with alcoholic cirrhosis and healthy controls were used to quantify protein synthesis, mammalian target of rapamycin complex 1 (mTORC1) signaling, and autophagy markers. Alcohol-metabolizing enzyme expression and activity in mouse muscle and myotubes and ureagenesis in hepatocytes were quantified. Expression and regulation of the ammonia transporters, RhBG and RhCG, were quantified by real-time PCR, immunoblots, reporter assays, biotin-tagged promoter pulldown with proteomics, and loss-of-function studies. Alcohol and aldehyde dehydrogenases were expressed and active in myotubes. Ethanol exposure impaired hepatocyte ureagenesis, induced muscle RhBG expression, and elevated muscle ammonia concentrations. Simultaneous ethanol and ammonia treatment impaired protein synthesis and mTORC1 signaling and increased autophagy with a consequent decreased myotube diameter to a greater extent than either treatment alone. Ethanol treatment and withdrawal followed by ammonia exposure resulted in greater impairment in muscle signaling and protein synthesis than ammonia treatment in ethanol-naive myotubes. Of the three transcription factors that were bound to the RhBG promoter in response to ethanol and ammonia, DR1/NC2 indirectly regulated transcription of RhBG during ethanol and ammonia treatment. Direct effects of ethanol were synergistic with increased ammonia uptake in causing dysregulated skeletal muscle proteostasis and signaling perturbations with a more severe sarcopenic phenotype.


Asunto(s)
Amoníaco/metabolismo , Etanol/farmacología , Músculo Esquelético/efectos de los fármacos , Animales , Línea Celular , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hiperamonemia/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Músculo Esquelético/metabolismo , Proteostasis/efectos de los fármacos , Transducción de Señal , Urea/metabolismo
18.
Liver Int ; 40(5): 1178-1188, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31889396

RESUMEN

BACKGROUND AND AIMS: Sarcopenia or skeletal muscle loss adversely affects outcomes in cirrhosis. The impact of aetiology of liver disease on the severity or the rate of muscle loss is not known. METHODS: Consecutive, well-characterized adult patients with cirrhosis due to viral hepatitis (VH), alcoholic liver disease (ALD) or non-alcoholic fatty liver disease (NAFLD) and non-diseased controls with at least two temporally distinct abdominal CT (computed tomography) scans were evaluated. Psoas, paraspinal and abdominal wall muscle areas at the L3 vertebra level were quantified on the CT scans. Standardized rate of change in muscle area was expressed as change in area/100 days. Univariate and multivariable analyses were performed to identify contributors to rate of muscle loss and survival. RESULTS: Among 83 cirrhotics (NAFLD n = 26, ALD n = 39, VH n = 18), there were 20 (24.1%) deaths over 62.7 ± 41.3 months. The mean percentage change in psoas area was -0.03 ± 0.05/100d in controls and -3.52 ± 0.45/100d in cirrhosis (P < .001). The mean percentage change in psoas area was -1.72 ± 0.27/100d in NAFLD, -5.28 ± 0.86/100d in ALD and -2.29 ± 0.28/100d in VH. Among cirrhotics, patients with ALD had the lowest initial muscle area and most rapid rate of reduction in muscle area. Aetiology of liver disease, model for end-stage liver disease (MELD) and the rate of loss of muscle area were independent risk factors for survival. CONCLUSIONS: Aetiology of liver disease is an independent risk factor for sarcopenia with the greatest rate of muscle loss noted in ALD. Survival in cirrhosis was dependent on initial muscle mass, rate of muscle loss and MELD score.


Asunto(s)
Enfermedad Hepática en Estado Terminal , Sarcopenia , Adulto , Humanos , Cirrosis Hepática/complicaciones , Músculo Esquelético/diagnóstico por imagen , Estudios Retrospectivos , Sarcopenia/complicaciones , Sarcopenia/diagnóstico por imagen , Índice de Severidad de la Enfermedad
19.
Nucleic Acids Res ; 45(17): e154, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973449

RESUMEN

Short hairpin RNAs (shRNAs) are effective in generating stable repression of gene expression. RNA polymerase III (RNAP III) type III promoters (U6 or H1) are typically used to drive shRNA expression. While useful for some knockdown applications, the robust expression of U6/H1-driven shRNAs can induce toxicity and generate heterogeneous small RNAs with undesirable off-target effects. Additionally, typical U6/H1 promoters encompass the majority of the ∼270 base pairs (bp) of vector space required for shRNA expression. This can limit the efficacy and/or number of delivery vector options, particularly when delivery of multiple gene/shRNA combinations is required. Here, we develop a compact shRNA (cshRNA) expression system based on retroviral microRNA (miRNA) gene architecture that uses RNAP III type II promoters. We demonstrate that cshRNAs coded from as little as 100 bps of total coding space can precisely generate small interfering RNAs (siRNAs) that are active in the RNA-induced silencing complex (RISC). We provide an algorithm with a user-friendly interface to design cshRNAs for desired target genes. This cshRNA expression system reduces the coding space required for shRNA expression by >2-fold as compared to the typical U6/H1 promoters, which may facilitate therapeutic RNAi applications where delivery vector space is limiting.


Asunto(s)
Marcación de Gen/métodos , Virus de la Leucemia Bovina/genética , MicroARNs/genética , ARN Polimerasa III/genética , ARN Interferente Pequeño/genética , ARN Viral/genética , Algoritmos , Emparejamiento Base , Secuencia de Bases , Regulación de la Expresión Génica , Silenciador del Gen , Genes Reporteros , Vectores Genéticos , Células HEK293 , Humanos , Virus de la Leucemia Bovina/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , MicroARNs/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa III/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Viral/metabolismo , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Análisis de Secuencia de ARN , Interfaz Usuario-Computador
20.
Muscle Nerve ; 54(3): 451-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26872412

RESUMEN

INTRODUCTION: Neurotransmitter-dependent signaling is traditionally restricted to axon terminals. However, receptors are present on myelinating glia, suggesting that chemical transmission may also occur along axons. METHODS: Confocal microscopy and Ca(2+) -imaging using an axonally expressed FRET-based reporter was used to measure Ca(2+) changes and morphological alterations in myelin in response to stimulation of glutamate receptors. RESULTS: Activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or N-methyl-D-aspartate (NMDA) receptors induced a Ca(2+) increase in axon cylinders. However, only the latter caused structural alterations in axons, despite similar Ca(2+) increases. Myelin morphology was significantly altered by NMDA receptor activation, but not by AMPA receptors. Cu(2+) ions influenced the NMDA receptor-dependent response, suggesting that this metal modulates axonal receptors. Glutamate increased ribosomal signal in Schwann cell cytoplasm. CONCLUSIONS: Axon cylinders and myelin of peripheral nervous system axons respond to glutamate, with a consequence being an increase in Schwann cell ribosomes. This may have implications for nerve pathology and regeneration. Muscle Nerve 54: 451-459, 2016.


Asunto(s)
Axones/metabolismo , Vaina de Mielina/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Cobre/metabolismo , Femenino , Transferencia Resonante de Energía de Fluorescencia , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Receptores Ionotrópicos de Glutamato/genética , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA