Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
PLoS Pathog ; 19(1): e1011098, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652494

RESUMEN

Proline acquired via specific transporters can serve as a proteinogenic substrate, carbon and nitrogen source, or osmolyte. Previous reports have documented that Staphylococcus aureus, a major community and nosocomial pathogen, encodes at least four proline transporters, PutP, OpuC, OpuD, and ProP. A combination of genetic approaches and 3H-proline transport assays reveal that a previously unrecognized transporter, ProT, in addition to PutP, are the major proline transporters in S. aureus. Complementation experiments using constitutively expressed non-cognate promoters found that proline transport via OpuD, OpuC, and ProP is minimal. Both proline biosynthesis from arginine and proline transport via ProT are critical for growth when S. aureus is grown under conditions of high salinity. Further, proline transport mediated by ProT or PutP are required for growth in media with and without glucose, indicating both transporters function to acquire proline for proteinogenic purposes in addition to acquisition of proline as a carbon/nitrogen source. Lastly, inactivation of proT and putP resulted in a significant reduction (5 log10) of bacterial burden in murine skin-and-soft tissue infection and bacteremia models, suggesting that proline transport is required to establish a S. aureus infection.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Ratones , Staphylococcus aureus/genética , Infecciones Estafilocócicas/microbiología , Prolina
2.
Malar J ; 12: 287, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23961915

RESUMEN

BACKGROUND: The piggyBac transposon system provides a powerful forward genetics tool to study gene function in Plasmodium parasites via random insertion mutagenesis and phenotypic screening. The identification of genotype of piggyBac mutants in the Plasmodium genome is thus an indispensable step in forward genetic analysis. Several PCR-based approaches have been used to identify the piggyBac insertion sites in Plasmodium falciparum and Plasmodium berghei, but all are tedious and inefficient. Next generation sequencing can produce large amounts of sequence data and is particularly suitable for genome-wide association studies. In this study, the Next generation sequencing technology was employed to efficiently identify piggyBac insertion sites in the genome of P. berghei. METHODS: Plasmodium berghei parasites were co-transfected with piggyBac donor and helper plasmids. Initially, the classical inverse PCR method was used to identify the existence of piggyBac insertions in the P. berghei genome. The whole genome of post-transfection parasites was subsequently sequenced with a PCR-free paired-end module using the Illumina HiSeq sequencing system. The two distinct methods ('BLAST method' and 'SOAP method') were employed to identify piggyBac insertion sites in the P. berghei genome with Illumina sequencing data. All the identified piggyBac insertions were further tested by half-nested PCR. RESULTS: The inverse PCR method resulted in a very low yield of ten individual insertions identified. Conversely, 47 piggyBac insertions were identified from about 1 Gb of Illumina sequencing data via the two distinct analysis methods. The majority of identified piggyBac insertions were confirmed by half-nested PCR. In addition, 1,850 single nucleotide polymorphisms were identified through alignment of the Illumina sequencing data of the P. berghei ANKA strain used in this study with the reference genome sequences. CONCLUSION: This study demonstrates that a high-throughput genome sequencing approach is an efficient tool for the identification of piggyBac-mediated insertions in Plasmodium parasites.


Asunto(s)
ADN Protozoario/genética , Genoma de Protozoos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutagénesis Insercional , Plasmodium berghei/genética , Animales , Elementos Transponibles de ADN , ADN Protozoario/química , Ratones , Biología Molecular/métodos , Plásmidos , Recombinación Genética
3.
J Biol Chem ; 286(42): 36619-30, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21880705

RESUMEN

Acidocalcisomes are acidic calcium and polyphosphate storage organelles found in a diverse range of organisms. Here we present evidence that the biogenesis of acidocalcisomes in Trypanosoma brucei is linked to the expression of adaptor protein-3 (AP-3) complex. Localization studies in cell lines expressing ß3 and δ subunits of AP-3 fused to epitope tags revealed their partial co-localization with the vacuolar proton pyrophosphatase, a marker of acidocalcisomes, with the Golgi marker Golgi reassembly and stacking protein, and with antibodies against the small GTPase Rab11. Ablation of the ß3 subunit by RNA interference (RNAi) resulted in disappearance of acidocalcisomes from both procyclic and bloodstream form trypanosomes, as revealed by immmunofluorescence and electron microscopy assays, with no alterations in trafficking of different markers to lysosomes. Knockdown of the ß3 subunit resulted in lower acidic calcium, pyrophosphate, and polyphosphate content as well as defects in growth in culture, resistance to osmotic stress, and virulence in mice. Similar results were obtained by knocking down the expression of the δ subunit of AP-3. These results indicate that AP-3 is essential for the biogenesis of acidocalcisomes and for growth and virulence of T. brucei.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Orgánulos/metabolismo , Proteínas Protozoarias/metabolismo , Factores de Transcripción/metabolismo , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/patogenicidad , Animales , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Ratones , Complejos Multiproteicos/genética , Orgánulos/genética , Proteínas Protozoarias/genética , Factores de Transcripción/genética , Trypanosoma brucei brucei/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA