RESUMEN
We have developed Quantitative Structure-Activity Relationship (QSAR) models based on Comparative Molecular Field Analysis (CoMFA) for 31 estrogenic chemicals whose relative binding affinity (RBA) is available for both ER-alpha and ER-beta. The models demonstrated a significant correlation (r2>0.95) between the CoMFA-calculated steric/electrostatic fields and corresponding RBA data and a good predictive capability (q2>0.6) based on cross-validation. The CoMFA models and contour plots obtained for ER-alpha and ER-beta suggest a close similarity between the receptors in terms of mode of binding and provide a rational basis for ligand selectivity.
Asunto(s)
Estrógenos/química , Estrógenos/metabolismo , Receptores de Estrógenos/metabolismo , Animales , Sitios de Unión , Electroquímica , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Ratas , Relación Estructura-ActividadRESUMEN
Three-dimensional quantitative structure-activity relationship (3D-QSAR) models have been obtained using comparative molecular field analysis (CoMFA) for a novel series of piperazine-based matrix metalloproteinase inhibitors (MMPIs). The crystal structure of stromelysin-1 (MMP-3) was used to identify regions of the enzyme and inhibitors where steric and electrostatic effects correlate strongly with biological activity. A training set composed of a subset of inhibitors (#10-35), which differed only with regards to the substituent (n-alkyl, amide, carbamide and sulfonamide) on the piperazine distal nitrogen, yielded the most predictive CoMFA model, with r(2) values of 0.592 (cross-validated) and 0.989 (conventional); this model was further validated using test compounds from two inhibitor subsets. Investigation of various ligand conformations, inhibitor subsets, alignment schemes and partial charge formalisms was required to obtain satisfactory models. The greatest success was achieved by incorporating inertial alignment together with manual adjustment of the enzyme-docked inhibitors to ensure complementarity between the inhibitors' substituent conformations and the structural characteristics of the MMP-3 S1-S2' binding pockets. Key insights into the structure-activity relationship (SAR) obtained from this analysis for this inhibitor set are in agreement with experimentally observed data on stromelysin-1 biological activity and binding-site topology. In particular, the present study sheds new light on the steric and electrostatic requirements for ligand binding to the partly solvent-exposed S1-S2' area.
Asunto(s)
Metaloproteinasa 3 de la Matriz/química , Piperazinas/síntesis química , Inhibidores de Proteasas/síntesis química , Cristalografía por Rayos X , Inhibidores de la Metaloproteinasa de la Matriz , Modelos Moleculares , Conformación Molecular , Piperazinas/química , Inhibidores de Proteasas/química , Unión Proteica , Relación Estructura-Actividad CuantitativaRESUMEN
A series of 1-benzyl-4-[2-(N-benzoylamino)ethyl]piperidine derivatives and of N-benzylpiperidine benzisoxazoles has been investigated using the comparative molecular field analysis (CoMFA) approach. These compounds have been found to inhibit the metabolic breakdown of the neurotransmitter acetylcholine (ACh) by the enzyme acetylcholinesterase (AChE) and hence alleviate memory deficits in patients with Alzheimer's Disease by potentiating cholinergic transmission. Development of the CoMFA model considered two separate alignments: (i) alignment I which emphasized the electrostatic fitting of the subject compounds and (ii) alignment II which emphasized their steric fitting. In addition, the inhibitor compounds were considered both as neutral species and as N-piperidine-protonated species. The resulting 3D-QSAR indicates a strong correlation between the inhibitory activity of these N-benzylpiperidines and the steric and electronic factors which modulate their biochemical activity. A CoMFA model with considerable predictive ability was obtained.
Asunto(s)
Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Piperidinas/química , Piperidinas/farmacología , Acetilcolinesterasa/efectos de los fármacos , Modelos MolecularesRESUMEN
A theoretical study was performed on a set of 38 human immunodeficiency type 1 (HIV-1) protease inhibitors that are structurally similar to the AIDS drug Indinavir. Comparison between the computed binding energies and experimental activity data (pIC(50)) found a high degree of correlation (r(2)() = 0.82). Three-dimensional quantitative structure-activity relationship (3D-QSAR) models using comparative molecular field analysis (CoMFA) yielded predicted activities that were in excellent agreement with the corresponding experimentally determined values. Inclusion of the calculated enzyme-inhibitor binding energy as an additional descriptor in the CoMFA model yielded a significant improvement in the internal predictive ability of our model (q(2)() = 0.45 to q(2)() = 0.69). Separate CoMFA models were constructed to evaluate the influence of different alignment schemes (Atom Fit and Field Fit) and different partial atomic charge assignment schemes (Discover CVFF, Gasteiger-Marsili, and AM1-ESP) on the statistical quality of the models.
Asunto(s)
Inhibidores de la Proteasa del VIH/química , Proteasa del VIH/química , Relación Estructura-Actividad Cuantitativa , Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/metabolismo , Indinavir/química , Unión Proteica , TermodinámicaRESUMEN
Constrained molecular dynamics simulations on anandamide, together with a systematic distance comparison search, have revealed a specific low-energy conformer whose spatial disposition of the pharmacophoric elements closely matches that of HHC. This conformer enables near superposition of the following: (1) the oxygen of the carboxyamide and the phenolic hydroxyl group of HHC, (2) the hydroxyl group of the ethanol and the cyclohexyl hydroxyl group of HHC, (3) the alkyl tail and the lipophilic side chain of HHC, and (4) the polyolefin loop and the tricyclic ring structure of HHC. The close matching of common pharmacophoric elements of anandamide with HHC offers persuasive evidence of the biological relevance of this conformer. The proposed pharmacophore model was capable of discriminating between structurally related compounds exhibiting different pharmacological potency for the CB1 cannabinoid receptor, i.e., anandamide and N-(2-hydroxyethyl)prostaglandinamide. Furthermore, a 3D-QSAR model was derived using CoMFA for a training set of 29 classical and nonclassical analogues which rationalized the binding affinity in terms of steric and electrostatic properties and, more importantly, which predicted the potency of anandamide in excellent agreement with experimental data. The ABC tricyclic HU-210/HU-211 and ACD tricyclic CP55,243/CP55,244 enantiomeric pairs were employed as test compounds to validate the present CoMFA model. For each enantiomeric pair, the CoMFA-predicted log Ki values correctly identified that enantiomer exhibiting the higher affinity for the receptor.
Asunto(s)
Ácidos Araquidónicos/química , Cannabinoides/metabolismo , Modelos Moleculares , Ácidos Araquidónicos/metabolismo , Endocannabinoides , Conformación Molecular , Alcamidas Poliinsaturadas , Receptores de Cannabinoides , Receptores de Droga/metabolismo , Relación Estructura-ActividadRESUMEN
The present study describes the implementation of comparative molecular field analysis (CoMFA) to develop two 3D-QSAR (quantitative structure-activity relationship) models (CoMFA models 1 and 2) of the cannabimimetic (aminoalkyl)indoles (AAIs) for CB1 cannabinoid receptor binding affinity, based on pKi values measured using radioligand binding assays that displace two different agonist ligands, [3H]CP-55940 and [3H]WIN-55212-2. Both models exhibited a strong correlation between the calculated steric-electrostatic fields and the observed biological activity for the respective training set compounds. In light of the basicity of the morpholine nitrogen in the AAIs, separate CoMFA models were built for the AAIs as unprotonated and protonated species. Comparison of the statistical parameters resulting from these CoMFA models failed to provide unequivocal evidence as to whether the AAIs are protonated or neutral as receptor-bound species. Although the training sets of CoMFA model 1 and CoMFA model 2 differed with respect to composition and to the choice of displacement radioligand in each biological assay, their CoMFA StDevCoeff contour plots reveal similarities in terms of identifying those regions around the AAIs that are important for CB1 cannabinoid receptor binding such as the sterically favored region around the C3 aroyl group and the sterically forbidden region around the indole ring. When the experimental pKi values for the training set compounds to displace the AAI radioligand [3H]WIN-55212-2 were plotted against the pKi values as predicted for the same compounds to displace the cannabinoid radioligand [3H]CP-55940, the correlation was moderately strong (r = 0.73). However, the degree of correlation may have been lowered by the structural differences in the compounds comprising the training sets for CoMFA model 1 and CoMFA model 2. Taken together, the results of this study suggest that the binding site region within the CB1 cannabinoid receptor can accommodate a wide range of structurally diverse cannabimimetic analogues including the AAIs.
Asunto(s)
Cannabinoides/química , Indoles/química , Modelos Moleculares , Animales , Benzoxazinas , Unión Competitiva , Encéfalo/metabolismo , Cannabinoides/metabolismo , Ciclohexanoles/metabolismo , Técnicas In Vitro , Indoles/metabolismo , Conformación Molecular , Imitación Molecular , Morfolinas/metabolismo , Naftalenos/metabolismo , Ensayo de Unión Radioligante , Ratas , Receptores de Cannabinoides , Receptores de Droga/agonistas , Relación Estructura-ActividadRESUMEN
The recognition of adverse effects due to environmental endocrine disruptors in humans and wildlife has focused attention on the need for predictive tools to select the most likely estrogenic chemicals from a very large number of chemicals for subsequent screening and/or testing for potential environmental toxicity. A three-dimensional quantitative structure-activity relationship (QSAR) model using comparative molecular field analysis (CoMFA) was constructed based on relative binding affinity (RBA) data from an estrogen receptor (ER) binding assay using calf uterine cytosol. The model demonstrated significant correlation of the calculated steric and electrostatic fields with RBA and yielded predictions that agreed well with experimental values over the entire range of RBA values. Analysis of the CoMFA three-dimensional contour plots revealed a consistent picture of the structural features that are largely responsible for the observed variations in RBA. Importantly, we established a correlation between the predicted RBA values for calf ER and their actual RBA values for human ER. These findings suggest a means to begin to construct a more comprehensive estrogen knowledge base by combining RBA assay data from multiple species in 3D-QSAR based predictive models, which could then be used to screen untested chemicals for their potential to bind to the ER. Another QSAR model was developed based on classical physicochemical descriptors generated using the CODESSA (Comprehensive Descriptors for Structural and Statistical Analysis) program. The predictive ability of the CoMFA model was superior to the corresponding CODESSA model.
Asunto(s)
Exposición a Riesgos Ambientales , Estrógenos/metabolismo , Receptores de Estrógenos/metabolismo , Humanos , Modelos Lineales , Estructura Molecular , Especificidad de la Especie , Relación Estructura-ActividadRESUMEN
Estrogen is a steroid hormone playing critical roles in physiological processes such as sexual differentiation and development, female and male reproductive processes, and bone health. Numerous natural and synthetic environmental compounds have been shown capable of estrogenic effects. This area has been the focus of significant fundamental and applied research due both to the potential detrimental effects of these compounds upon normal physiological processes and to the potential beneficial effects of tissue-selective estrogen agonists/antagonists for the prevention and treatment of numerous diseases. Genomic effects of the active form of estrogen, 17beta-estradiol, are mediated through at least two members of the steroid hormone receptor superfamily, estrogen receptor subtype alpha (ER-alpha) and estrogen receptor subtype beta (ER-beta). At the time of this work, the X-ray crystal structure of the ER-alpha had been elucidated, however, coordinates of the ER-beta were not publicly available. Based upon the significant structural conservation across members of the steroid hormone receptor family, and the high sequence homology between ER-alpha and ER-beta (>60%), we have developed a homology model of the ER-beta structure. Using the crystal structure of ER-alpha and the homology model of ER-beta, we demonstrate a strong correlation between computed values of the binding-energy and published values of the observed relative binding affinity (RBA) for a variety of compounds for both receptors, as well as the ability to identify receptor subtype selective compounds. Furthermore, using the recently available crystal structure of ER-beta for comparison purposes, we show that not only is the predicted homology model structurally accurate, but that it can be used to assess ligand binding affinities.
Asunto(s)
Receptores de Estrógenos/química , Secuencia de Aminoácidos , Simulación por Computador , Receptor alfa de Estrógeno , Receptor beta de Estrógeno , Estrógenos/química , Estrógenos/metabolismo , Humanos , Técnicas In Vitro , Cinética , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Homología de Secuencia de Aminoácido , TermodinámicaRESUMEN
The eicosanoid ligand, arachidonylethanolamide (anandamide), interacts with the CB1 cannabinoid receptor in the brain to signal its response. Pharmacophoric points of interaction between this agonist and the receptor have been proposed based upon structure-activity relationship studies of ligand binding to the receptor. Three dimensional quantitative structure-activity relationship (3D-QSAR) models have been constructed based upon the corresponding pharmacophoric points predicted for cannabinoid ligands delta9-tetrahydrocannabinol and 9-nor-9beta-hydroxyhexa-hydrocannabinol. A novel data set has been used to test the statistical validity of these models. Once the ligand interacts with the CB1 receptor, signal transduction occurs via G-proteins of the Gi/o family which are shown to be associated with the receptor. Evidence suggests that the juxtamembrane region of the C-terminal of the CB1 receptor is critical for activation of these G-proteins.
Asunto(s)
Ácidos Araquidónicos/metabolismo , Receptores de Droga/metabolismo , Transducción de Señal , Animales , Ácidos Araquidónicos/química , Cannabinoides , Endocannabinoides , Proteínas de Unión al GTP/metabolismo , Humanos , Ligandos , Estructura Molecular , Alcamidas Poliinsaturadas , Receptores de CannabinoidesRESUMEN
The 3D-QSAR method of comparative molecular field analysis (CoMFA) was applied to three patent families of chemical hybridization agents (CHAs) in the MON21200 class of chemistry. The models for each CHA family gave good correlations between the variations in log percent male sterility and in the steric-electrostatic properties of the patent set. For all CHA families, observed sterility rates are generally higher for the sodium salts than for the corresponding esters. This is consistent with our CoMFA models which show that negative charge is favored in the region of the carboxylate group. The CoMFA models also indicated that for the MON21200 family increased steric bulk at the 4-position on the phenyl ring is associated with enhanced activity. However, for the RH0007 and the HYBRID families, male sterility is generally enhanced with increased steric bulk at the 2- or 3-position on the phenyl ring. Although the models cannot provide unambiguous conclusions about a common mode of action, similarities in the CoMFA contour maps provided some clues for a common agrophore for these three CHA families.
Asunto(s)
Hibridación Genética , Plantas/química , Química Agrícola/métodos , Infertilidad , Modelos Químicos , Relación Estructura-ActividadRESUMEN
A substantial body of evidence indicates that both humans and wildlife suffer adverse health effects from exposure to environmental chemicals that are capable of interacting with the endocrine system. The recent cloning of the estrogen receptor beta subtype (ER-beta) suggests that the selective effects of estrogenic compounds may arise in part by the control of different subsets of estrogen-responsive promoters by the two ER subtypes, ER-alpha and ER-beta. In order to identify the structural prerequisites for ligand-ER binding and to discriminate ER-alpha and ER-beta in terms of their ligand-binding specificities, Comparative Molecular Field Analysis (CoMFA) was employed to construct a three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) model on a data set of 31 structurally-diverse compounds for which competitive binding affinities have been measured against both ER-alpha and ER-beta. Structural alignment of the molecules in CoMFA was achieved by maximizing overlap of their steric and electrostatic fields using the Steric and Electrostatic ALignment (SEAL) algorithm. The final CoMFA models, generated by correlating the calculated 3D steric and electrostatic fields with the experimentally observed binding affinities using partial least-squares (PLS) regression, exhibited excellent self-consistency (r2 > 0.99) as well as high internal predictive ability (q2 > 0.65) based on cross-validation. CoMFA-predicted values of RBA for a test set of compounds outside of the training set were consistent with experimental observations. These CoMFA models can serve as guides for the rational design of ER ligands that possess preferential binding affinities for either ER-alpha or ER-beta. These models can also prove useful in risk assessment programs to identify real or suspected EDCs.
Asunto(s)
Algoritmos , Modelos Teóricos , Receptores de Estrógenos/química , Animales , Sitios de Unión , Unión Competitiva , Estradiol/química , Estradiol/metabolismo , Receptor alfa de Estrógeno , Receptor beta de Estrógeno , Humanos , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Valor Predictivo de las Pruebas , Conformación Proteica , Receptores de Estrógenos/metabolismo , Electricidad Estática , Esteroides/química , Esteroides/metabolismo , Relación Estructura-Actividad , TermodinámicaRESUMEN
This article presents a self-organising multilayered iterative algorithm that provides linear and non-linear polynomial regression models thus allowing the user to control the number and the power of the terms in the models. The accuracy of the algorithm is compared to the partial least squares (PLS) algorithm using fourteen data sets in quantitative-structure activity relationship studies. The calculated data show that the proposed method is able to select simple models characterized by a high prediction ability and thus provides a considerable interest in quantitative-structure activity relationship studies. The software is developed using client-server protocol (Java and C++ languages) and is available for world-wide users on the Web site of the authors.
Asunto(s)
Internet , Redes Neurales de la Computación , Relación Estructura-Actividad Cuantitativa , Modelos Estadísticos , Análisis de Regresión , Programas InformáticosRESUMEN
The conformational properties of the lipophilic antifolate trimetrexate (TMQ) were calculated and compared to the structurally-analogous prototypical antifolate methotrexate (MTX) using both empirical force-field and AM1 quantum mechanical methods. The conformational preferences of TMQ and MTX are diametrically opposed with respect to the bridge-system set of torsion angles tau 1, tau 2: TMQ prefers gauche, trans while MTX prefers approximately trans, gauche. These predictions are consistent with the observed crystal structures of TMQ (i.e., tau 1 = 79 degrees, tau 2 = 178 degrees) and of DHFR-bound MTX (i.e., tau 1 = -157 degrees, tau 2 = 57 degrees in L. casei). The crystal structure of MTX.4H2O deviates from this pattern with tau 1 closer to cis (i.e., 39 degrees) than the predicted trans, yet this near-cis conformation is driven by intermolecular hydrogen-bonding and electrostatic forces operative in the MTX crystal. As a consequence of these strong intermolecular forces, MTX incurs 1.8 kcal/mole in conformational-strain energy in its crystalline form. In contrast, TMQ experiences virtually no conformational strain in its crystalline form. This disparity is attributed to two distinctions between TMQ and MTX: (i) MTX crystallizes as a zwitterion while TMQ crystallizes as the free base, and (ii) the hydrophilic glutamate tail in MTX is replaced by three lipophilic trimethoxy groups in TMQ. The corresponding conformational-strain energy of DHFR-bound MTX is 2.0 kcal/mole while that of DHFR-bound TMQ is only 0.65 kcal/mole based on the assumption that the latter adopts the same bridge conformation as the former. This cost in conformational-strain energy for TMQ and MTX is paid at the expense of their respective free energies of binding of DHFR. Consequently, the present study offers the possibility of designing a new class of antifolates which are conformationally strain-free when bound to DHFR and thereby more effective as chemotherapeutic agents.
Asunto(s)
Trimetrexato/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Fenómenos Biofísicos , Biofisica , Técnicas In Vitro , Metotrexato/química , Metotrexato/metabolismo , Conformación Molecular , Teoría Cuántica , Tetrahidrofolato Deshidrogenasa/metabolismo , Termodinámica , Trimetrexato/metabolismoRESUMEN
AM1 quantum mechanical reaction coordinate (RC) calculations were run to simulate the rate-limiting deacylation (hydrolysis) reaction for a series of para-X-PhC(O)NHCH2-C(Y)-S-papain intermediates, where X = OCH3, CH3, H, Cl, NO2 and Y = O (thioester) or S (dithioester), for which a large body of structural, kinetic, and spectroscopic data is available. Several reaction zones, in particular the so-designated Large Zone and Small Zone, were extracted for these RC simulations from the fully solvated and energy-minimized X-ray crystal structure of papain (pdb9pap) bound to the appropriate substrate moiety. The major structural difference between these two zones was the absence of the oxyanion hole in the latter. For both the thioester and dithioester cases, the calculated Ea value associated with the parent (X = H) acyl-enzyme intermediate was lower by ca. 10 kcal/mol for the Large Zone than for the Small Zone. The magnitude of this difference suggests that the oxyanion hole plays a functional if not essential role in stabilizing the anionic tetrahedral intermediate with the cysteine proteases. The calculated Ea value was lower by ca. 10 kcal/mol for the thioester [-C(O)-S-] than for the corresponding dithioester [-C(S)-S-], in qualitative agreement with kinetic data for this series of substrates which reveal that the specific rate constant for deacylation k3 is ca. 60 times larger for the former. This difference is also consistent with both AM1 and 6-31G* calculations on model intermediates, which indicate that the weaker polarity of the dithioester compared with the thioester [i.e., -C(<--S)-S-versus-C(-->O)-S-] renders the former a much poorer site for nucleophilic attack. The anionic tetrahedral intermediate is energetically more stable for the dithioester than for the corresponding thioester, a finding that is discussed in terms of its kinetic and mechanistic implications. The mode of attack by the H2O nucleophile is "concerted" rather than "sequential" in terms of the order of proton abstraction by His-159 and nucleophilic attack on the acyl-enzyme intermediate. While the presumably key Sthiol . . . N nonbonded contact remained almost constant (ca. 2.90 A) up to formation of the [TS] structure, the substrate torsion angles phi and psi rotated significantly as the hybridization around the reaction site transforms from sp2 to sp3 during formation of the tetrahedral intermediate. The AM1-calculated frontier molecular orbitals for model thioester and dithioester acyl-enzyme intermediates generally associate the HOMOs with the reaction site and the LUMOs with the benzamide moiety. Computer graphics images corroborate our view that, in relation to the Sthiol . . . N interaction, the HOMOs and LUMOs should be identified, respectively, with Sthiol and N rather than the reverse, as suggested by other workers.
Asunto(s)
Modelos Moleculares , Papaína/química , Acilación , Sitios de Unión , Cisteína Endopeptidasas , Papaína/metabolismo , Especificidad por SustratoRESUMEN
The vaporization enthalpies of 16 polychlorinated biphenyls have been determined by correlation gas chromatography. This study was prompted by the realization that the vaporization enthalpy of the standard compounds used in previous studies, octadecane and eicosane, were values measured at 340 and 362 K, respectively, rather than at 298 K. Adjustment to 298 K amounts to a 7-8 kJ/mol increment in the values. With the inclusion of this adjustment, vaporization enthalpies evaluated by correlation gas chromatography are in good agreement with the values determined previously in the literature. The present results are based on the vaporization enthalpies of several standards whose values are well established in the literature. The standards include a variety of n-alkanes and various chlorinated hydrocarbons. The vaporization enthalpies of PCBs increased with the number of chlorine atoms and were found to be larger for meta- and para-substituted polychlorinated biphenyls.
RESUMEN
We have uncovered new evidence for a significant interaction between divalent sulfur atoms and aromatic rings. Our study involves a statistical analysis of interatomic distances and other geometric descriptors derived from entries in the Cambridge Crystallographic Database (F. H. Allen and O. Kennard, Chem. Design Auto. News, 1993, Vol. 8, pp. 1 and 31-37). A set of descriptors was defined sufficient in number and type so as to elucidate completely the preferred geometry of interaction between six-membered aromatic carbon rings and divalent sulfurs for all crystal structures of nonmetal-bearing organic compounds present in the database. In order to test statistical significance, analogous probability distributions for the interaction of the moiety X-CH(2)-X with aromatic rings were computed, and taken a priori to correspond to the null hypothesis of no significant interaction. Tests of significance were carried our pairwise between probability distributions of sulfur-aromatic interaction descriptors and their CH(2)-aromatic analogues using the Smirnov-Kolmogorov nonparametric test (W. W. Daniel, Applied Nonparametric Statistics, Houghton-Mifflin: Boston, New York, 1978, pp. 276-286), and in all cases significance at the 99% confidence level or better was observed. Local maxima of the probability distributions were used to define a preferred geometry of interaction between the divalent sulfur moiety and the aromatic ring. Molecular mechanics studies were performed in an effort to better understand the physical basis of the interaction. This study confirms observations based on statistics of interaction of amino acids in protein crystal structures (R. S. Morgan, C. E. Tatsch, R. H. Gushard, J. M. McAdon, and P. K. Warme, International Journal of Peptide Protein Research, 1978, Vol. 11, pp. 209-217; R. S. Morgan and J. M. McAdon, International Journal of Peptide Protein Research, 1980, Vol. 15, pp. 177-180; K. S. C. Reid, P. F. Lindley, and J. M. Thornton, FEBS Letters, 1985, Vol. 190, pp. 209-213), as well as studies involving molecular mechanics (G. Nemethy and H. A. Scheraga, Biochemistry and Biophysics Research Communications, 1981, Vol. 98, pp. 482-487) and quantum chemical calculations (B. V. Cheney, M. W. Schulz, and J. Cheney, Biochimica Biophysica Acta, 1989, Vol. 996, pp.116-124; J. Pranata, Bioorganic Chemistry, 1997, Vol. 25, pp. 213-219)-all of which point to the possible importance of the sulfur-aromatic interaction. However, the preferred geometry of the interaction, as determined from our analysis of the small-molecule crystal data, differs significantly from that found by other approaches.
Asunto(s)
Hidrocarburos Aromáticos/química , Azufre/química , Cristalografía por Rayos X , Modelos MolecularesRESUMEN
Geometry-optimized CNDO/2 molecular orbital calculations were carried out on 2, 4-diamino-5-(1-adamantyl 1)-6-methyl pyrimidine (DAMP), a potent inhibitor of mammalian dihydrofolate reductase which is now in clinical trials, and on its inactive 5-(1-naphthyl) analogue (DNMP-1). Crystallographic data show that DAMP (as the ethylsulfonate salt) has a severely distorted, N1 protonated, pyrimidine ring and has steric crowding of the 6-methyl and adamantyl hydrogens whereas DNMP-2 (as a methanol complex) has a planar, nonprotonated pyrimidine ring that is nearly perpendicular to the naphthalene ring. The CNDO/2 results largely reproduce the crystal structure geometry and show that the ring distortions in DAMP are initiated by steric conflicts between the adamantyl group and the 4- and 6-substituents on the ring. In DNMP-1, the non-interfering naphthyl ring induces little strain within the pyrimidine ring and the effect of protonation is negligible. Rotation about the bond joining the two ring groups is restricted in DAMP by a broad barrier of ca. 8.0 kcal mol-1, and no conformation was successful in relieving steric conflicts and hence reducing the ring distortions. In DNMP-1, rotation is less hindered overall with a broad region of accessible conformational space and a maximum barrier of ca. 7.2 kcal mol-1 for the coplanar conformation. The electronic charge distributions of DAMP and DNMP-1 are almost identical and protonation is preferred at N1 rather than at N3 by ca. 3.7 kcal mol-1 for both DAMP and DNMP-1. The calculations establish that the present methodology can be useful as a predictive tool with regard to the structure and conformational characteristics of these and related species.