Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Plant Biotechnol J ; 19(1): 35-50, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32569428

RESUMEN

High-throughput phenotyping is increasingly becoming an important tool for rapid advancement of genetic gain in breeding programmes. Manual phenotyping of vascular bundles is tedious and time-consuming, which lags behind the rapid development of functional genomics in maize. More robust and automated techniques of phenotyping vascular bundles traits at high-throughput are urgently needed for large crop populations. In this study, we developed a standard process for stem micro-CT data acquisition and an automatic CT image process pipeline to obtain vascular bundle traits of stems including geometry-related, morphology-related and distribution-related traits. Next, we analysed the phenotypic variation of stem vascular bundles between natural population subgroup (480 inbred lines) based on 48 comprehensively phenotypic information. Also, the first database for stem micro-phenotypes, MaizeSPD, was established, storing 554 pieces of basic information of maize inbred lines, 523 pieces of experimental information, 1008 pieces of CT scanning images and processed images, and 24 192 pieces of phenotypic data. Combined with genome-wide association studies (GWASs), a total of 1562 significant single nucleotide polymorphism (SNPs) were identified for 30 stem micro-phenotypic traits, and 84 unique genes of 20 traits such as VBNum, VBAvArea and PZVBDensity were detected. Candidate genes identified by GWAS mainly encode enzymes involved in cell wall metabolism, transcription factors, protein kinase and protein related to plant signal transduction and stress response. The results presented here will advance our knowledge about phenotypic trait components of stem vascular bundles and provide useful information for understanding the genetic controls of vascular bundle formation and development.


Asunto(s)
Haz Vascular de Plantas , Zea mays , Estudios de Asociación Genética , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Zea mays/genética
2.
AoB Plants ; 16(2): plae019, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38660049

RESUMEN

It is of great significance to study the plant morphological structure for improving crop yield and achieving efficient use of resources. Three dimensional (3D) information can more accurately describe the morphological and structural characteristics of crop plants. Automatic acquisition of 3D information is one of the key steps in plant morphological structure research. Taking wheat as the research object, we propose a point cloud data-driven 3D reconstruction method that achieves 3D structure reconstruction and plant morphology parameterization at the phytomer scale. Specifically, we use the MVS-Pheno platform to reconstruct the point cloud of wheat plants and segment organs through the deep learning algorithm. On this basis, we automatically reconstructed the 3D structure of leaves and tillers and extracted the morphological parameters of wheat. The results show that the semantic segmentation accuracy of organs is 95.2%, and the instance segmentation accuracy AP50 is 0.665. The R2 values for extracted leaf length, leaf width, leaf attachment height, stem leaf angle, tiller length, and spike length were 0.97, 0.80, 1.00, 0.95, 0.99, and 0.95, respectively. This method can significantly improve the accuracy and efficiency of 3D morphological analysis of wheat plants, providing strong technical support for research in fields such as agricultural production optimization and genetic breeding.

3.
Plant Phenomics ; 6: 0160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510827

RESUMEN

The 3-dimensional (3D) modeling of crop canopies is fundamental for studying functional-structural plant models. Existing studies often fail to capture the structural characteristics of crop canopies, such as organ overlapping and resource competition. To address this issue, we propose a 3D maize modeling method based on computational intelligence. An initial 3D maize canopy is created using the t-distribution method to reflect characteristics of the plant architecture. The subsequent model considers the 3D phytomers of maize as intelligent agents. The aim is to maximize the ratio of sunlit leaf area, and by iteratively modifying the azimuth angle of the 3D phytomers, a 3D maize canopy model that maximizes light resource interception can be constructed. Additionally, the method incorporates a reflective approach to optimize the canopy and utilizes a mesh deformation technique for detecting and responding to leaf collisions within the canopy. Six canopy models of 2 varieties plus 3 planting densities was constructed for validation. The average R2 of the difference in azimuth angle between adjacent leaves is 0.71, with a canopy coverage error range of 7% to 17%. Another 3D maize canopy model constructed using 12 distinct density gradients demonstrates the proportion of leaves perpendicular to the row direction increases along with the density. The proportion of these leaves steadily increased after 9 × 104 plants ha-1. This study presents a 3D modeling method for the maize canopy. It is a beneficial exploration of swarm intelligence on crops and generates a new way for exploring efficient resources utilization of crop canopies.

4.
Plants (Basel) ; 12(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36771568

RESUMEN

Unmanned ground vehicles (UGV) have attracted much attention in crop phenotype monitoring due to their lightweight and flexibility. This paper describes a new UGV equipped with an electric slide rail and point cloud high-throughput acquisition and phenotype extraction system. The designed UGV is equipped with an autopilot system, a small electric slide rail, and Light Detection and Ranging (LiDAR) to achieve high-throughput, high-precision automatic crop point cloud acquisition and map building. The phenotype analysis system realized single plant segmentation and pipeline extraction of plant height and maximum crown width of the crop point cloud using the Random sampling consistency (RANSAC), Euclidean clustering, and k-means clustering algorithm. This phenotyping system was used to collect point cloud data and extract plant height and maximum crown width for 54 greenhouse-potted lettuce plants. The results showed that the correlation coefficient (R2) between the collected data and manual measurements were 0.97996 and 0.90975, respectively, while the root mean square error (RMSE) was 1.51 cm and 4.99 cm, respectively. At less than a tenth of the cost of the PlantEye F500, UGV achieves phenotypic data acquisition with less error and detects morphological trait differences between lettuce types. Thus, it could be suitable for actual 3D phenotypic measurements of greenhouse crops.

5.
Plants (Basel) ; 12(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36771532

RESUMEN

The characterization, analysis, and evaluation of morphology and structure are crucial in wheat research. Quantitative and fine characterization of wheat morphology and structure from a three-dimensional (3D) perspective has great theoretical significance and application value in plant architecture identification, high light efficiency breeding, and cultivation. This study proposes a geometric modeling method of wheat plants based on the 3D phytomer concept. Specifically, 3D plant architecture parameters at the organ, phytomer, single stem, and individual plant scales were extracted based on the geometric models. Furthermore, plant architecture vector (PA) was proposed to comprehensively evaluate wheat plant architecture, including convergence index (C), leaf structure index (L), phytomer structure index (PHY), and stem structure index (S). The proposed method could quickly and efficiently achieve 3D wheat plant modeling by assembling 3D phytomers. In addition, the extracted PA quantifies the plant architecture differences in multi-scales among different cultivars, thus, realizing a shift from the traditional qualitative to quantitative analysis of plant architecture. Overall, this study promotes the application of the 3D phytomer concept to multi-tiller crops, thereby providing a theoretical and technical basis for 3D plant modeling and plant architecture quantification in wheat.

6.
Plants (Basel) ; 12(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36986918

RESUMEN

Maize (Zea mays L.) benefits from heterosis in-yield formation and photosynthetic efficiency through optimizing canopy structure and improving leaf photosynthesis. However, the role of canopy structure and photosynthetic capacity in determining heterosis in biomass production and radiation use efficiency has not been separately clarified. We developed a quantitative framework based on a phytomer-based three-dimensional canopy photosynthesis model and simulated light capture and canopy photosynthetic production in scenarios with and without heterosis in either canopy structure or leaf photosynthetic capacity. The accumulated above-ground biomass of Jingnongke728 was 39% and 31% higher than its male parent, Jing2416, and female parent, JingMC01, while accumulated photosynthetically active radiation was 23% and 14% higher, correspondingly, leading to an increase of 13% and 17% in radiation use efficiency. The increasing post-silking radiation use efficiency was mainly attributed to leaf photosynthetic improvement, while the dominant contributing factor differs for male and female parents for heterosis in post-silking yield formation. This quantitative framework illustrates the potential to identify the key traits related to yield and radiation use efficiency and helps breeders to make selections for higher yield and photosynthetic efficiency.

7.
Plant Methods ; 19(1): 76, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528454

RESUMEN

BACKGROUND: The morphological structure phenotype of maize tassel plays an important role in plant growth, reproduction, and yield formation. It is an important step in the distinctness, uniformity, and stability (DUS) testing to obtain maize tassel phenotype traits. Plant organ segmentation can be achieved with high-precision and automated acquisition of maize tassel phenotype traits because of the advances in the point cloud deep learning method. However, this method requires a large number of data sets and is not robust to automatic segmentation of highly adherent organ components; thus, it should be combined with point cloud processing technology. RESULTS: An innovative method of incomplete annotation of point cloud data was proposed for easy development of the dataset of maize tassels,and an automatic maize tassel phenotype analysis system: MaizeTasselSeg was developed. The tip feature of point cloud is trained and learned based on PointNet + + network, and the tip point cloud of tassel branch was automatically segmented. Complete branch segmentation was realized based on the shortest path algorithm. The Intersection over Union (IoU), precision, and recall of the segmentation results were 96.29, 96.36, and 93.01, respectively. Six phenotypic traits related to morphological structure (branch count, branch length, branch angle, branch curvature, tassel volume, and dispersion) were automatically extracted from the segmentation point cloud. The squared correlation coefficients (R2) for branch length, branch angle, and branch count were 0.9897, 0.9317, and 0.9587, respectively. The root mean squared error (RMSE) for branch length, branch angle, and branch count were 0.529 cm, 4.516, and 0.875, respectively. CONCLUSION: The proposed method provides an efficient scheme for high-throughput organ segmentation of maize tassels and can be used for the automatic extraction of phenotypic traits of maize tassel. In addition, the incomplete annotation approach provides a new idea for morphology-based plant segmentation.

8.
Plant Phenomics ; 5: 0043, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223316

RESUMEN

The field phenotyping platforms that can obtain high-throughput and time-series phenotypes of plant populations at the 3-dimensional level are crucial for plant breeding and management. However, it is difficult to align the point cloud data and extract accurate phenotypic traits of plant populations. In this study, high-throughput, time-series raw data of field maize populations were collected using a field rail-based phenotyping platform with light detection and ranging (LiDAR) and an RGB (red, green, and blue) camera. The orthorectified images and LiDAR point clouds were aligned via the direct linear transformation algorithm. On this basis, time-series point clouds were further registered by the time-series image guidance. The cloth simulation filter algorithm was then used to remove the ground points. Individual plants and plant organs were segmented from maize population by fast displacement and region growth algorithms. The plant heights of 13 maize cultivars obtained using the multi-source fusion data were highly correlated with the manual measurements (R2 = 0.98), and the accuracy was higher than only using one source point cloud data (R2 = 0.93). It demonstrates that multi-source data fusion can effectively improve the accuracy of time series phenotype extraction, and rail-based field phenotyping platforms can be a practical tool for plant growth dynamic observation of phenotypes in individual plant and organ scales.

9.
Front Plant Sci ; 14: 1248446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701799

RESUMEN

The morphology of maize ears plays a critical role in the breeding of new varieties and increasing yield. However, the study of traditional ear-related traits alone can no longer meet the requirements of breeding. In this study, 20 ear-related traits, including size, shape, number, and color, were obtained in 407 maize inbred lines at two sites using a high-throughput phenotypic measurement method and system. Significant correlations were found among these traits, particularly the novel trait ear shape (ES), which was correlated with traditional traits: kernel number per row and kernel number per ear. Pairwise comparison tests revealed that the inbred lines of tropical-subtropical were significantly different from other subpopulations in row numbers per ear, kernel numbers per ear, and ear color. A genome-wide association study identified 275, 434, and 362 Single nucleotide polymorphisms (SNPs) for Beijing, Sanya, and best linear unbiased prediction scenarios, respectively, explaining 3.78% to 24.17% of the phenotypic variance. Furthermore, 58 candidate genes with detailed functional descriptions common to more than two scenarios were discovered, with 40 genes being associated with color traits on chromosome 1. After analysis of haplotypes, gene expression, and annotated information, several candidate genes with high reliability were identified, including Zm00001d051328 for ear perimeter and width, zma-MIR159f for ear shape, Zm00001d053080 for kernel width and row number per ear, and Zm00001d048373 for the blue color channel of maize kernels in the red-green-blue color model. This study emphasizes the importance of researching novel phenotypic traits in maize by utilizing high-throughput phenotypic measurements. The identified genetic loci enrich the existing genetic studies related to maize ears.

10.
Front Plant Sci ; 14: 1253536, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38192698

RESUMEN

Real-time monitoring of canopy chlorophyll content is significant in understanding crop growth status and guiding precision agricultural management. Remote sensing methods have demonstrated great potential in this regard. However, the spatiotemporal heterogeneity of chlorophyll content within crop canopies poses challenges to the accuracy and stability of remote sensing estimation models. Hence, this study aimed to develop a novel method for estimating canopy chlorophyll content (represented by SPAD values) in maize (Zea mays L.) canopies. Firstly, we investigated the spatiotemporal distribution patterns of maize canopy SPAD values under varying nitrogen application rates and different growth stages. The results revealed a non-uniform, "bell-shaped" curve distribution of maize canopy SPAD values in the vertical direction. Nitrogen application significantly influenced the distribution structure of SPAD values within the canopy. Secondly, we achieved satisfactory results by fitting the Lorentz peak distribution function to the SPAD values of different leaf positions in maize. The fitting performance, evaluated using R2 and RMSE, ranged from 0.69 to 0.98 and 0.45 to 3.59, respectively, for the year 2021, and from 0.69 to 0.77 and 2.38 to 6.51, respectively, for the year 2022.Finally, based on the correlation between canopy SPAD values and vegetation indices (VIs) at different growth stages, we identified the sensitive leaf positions for the selected CCCI (Canopy Chlorophyll Index) in each growth stage. The 6th (r = 0.662), 4th (r = 0.816), 12th (r = 0.722), and 12th (r = 0.874) leaf positions exhibited the highest correlations. Compared to the estimation model using canopy wide SPAD values, the model based on sensitive leaf positions showed improved accuracy, with increases of 34%, 3%, 20%, and 3% for each growth stage, respectively. In conclusion, the findings of this study contribute to the enhancement of chlorophyll content estimation models in crop canopies and provide valuable insights for the integration of crop growth models with remote sensing methods.

11.
Front Plant Sci ; 13: 826875, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837446

RESUMEN

The rapid development of high-throughput phenotypic detection techniques makes it possible to obtain a large number of crop phenotypic information quickly, efficiently, and accurately. Among them, image-based phenotypic acquisition method has been widely used in crop phenotypic identification and characteristic research due to its characteristics of automation, non-invasive, non-destructive and high throughput. In this study, we proposed a method to define and analyze the traits related to leaf sheaths including morphology-related, color-related and biomass-related traits at V6 stage. Next, we analyzed the phenotypic variation of leaf sheaths of 418 maize inbred lines based on 87 leaf sheath-related phenotypic traits. In order to further analyze the mechanism of leaf sheath phenotype formation, 25 key traits (2 biomass-related, 19 morphology-related and 4 color-related traits) with heritability greater than 0.3 were analyzed by genome-wide association studies (GWAS). And 1816 candidate genes of 17 whole plant leaf sheath traits and 1,297 candidate genes of 8 sixth leaf sheath traits were obtained, respectively. Among them, 46 genes with clear functional descriptions were annotated by single nucleotide polymorphism (SNPs) that both Top1 and multi-method validated. Functional enrichment analysis results showed that candidate genes of leaf sheath traits were enriched into multiple pathways related to cellular component assembly and organization, cell proliferation and epidermal cell differentiation, and response to hunger, nutrition and extracellular stimulation. The results presented here are helpful to further understand phenotypic traits of maize leaf sheath and provide a reference for revealing the genetic mechanism of maize leaf sheath phenotype formation.

12.
Front Plant Sci ; 13: 735981, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061758

RESUMEN

Canopy photosynthesis integrates leaf functional and structural traits in space and time and correlates positively with yield formation. Many models with different levels of architectural details ranging from zero-dimensional (0D) to three-dimensional (3D) have been developed to simulate canopy light interception and photosynthesis. Based on these models, a crop growth model can be used to assess crop yield in response to genetic improvement, optimized practices, and environmental change. However, to what extent do architectural details influence light interception, photosynthetic production, and grain yield remains unknown. Here, we show that a crop growth model with high-resolution upscaling approach in space reduces the departure of predicted yield from actual yield and refines the simulation of canopy photosynthetic production. We found crop yield predictions decreased by 12.0-48.5% with increasing the resolution of light simulation, suggesting that a crop growth model without architectural details may result in a considerable departure from the actual photosynthetic production. A dramatic difference in light interception and photosynthetic production of canopy between cultivars was captured by the proposed 3D model rather than the 0D, 1D, and 2D models. Furthermore, we found that the overestimation of crop yield by the 0D model is caused by the overestimation of canopy photosynthetically active radiation (PAR) interception and the RUE and that by the 1D and 2D model is caused by the overestimated canopy photosynthesis rate that is possibly related to higher predicted PAR and fraction of sunlit leaves. Overall, this study confirms the necessity of taking detailed architecture traits into consideration when evaluating the strategies of genetic improvement and canopy configuration in improving crop yield by crop modeling.

13.
Front Plant Sci ; 13: 927832, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845657

RESUMEN

The currently available methods for evaluating most biochemical traits of plant phenotyping are destructive and have extremely low throughput. However, hyperspectral techniques can non-destructively obtain the spectral reflectance characteristics of plants, which can provide abundant biophysical and biochemical information. Therefore, plant spectra combined with machine learning algorithms can be used to predict plant phenotyping traits. However, the raw spectral reflectance characteristics contain noise and redundant information, thus can easily affect the robustness of the models developed via multivariate analysis methods. In this study, two end-to-end deep learning models were developed based on 2D convolutional neural networks (2DCNN) and fully connected neural networks (FCNN; Deep2D and DeepFC, respectively) to rapidly and non-destructively predict the phenotyping traits of lettuces from spectral reflectance. Three linear and two nonlinear multivariate analysis methods were used to develop models to weigh the performance of the deep learning models. The models based on multivariate analysis methods require a series of manual feature extractions, such as pretreatment and wavelength selection, while the proposed models can automatically extract the features in relation to phenotyping traits. A visible near-infrared hyperspectral camera was used to image lettuce plants growing in the field, and the spectra extracted from the images were used to train the network. The proposed models achieved good performance with a determination coefficient of prediction ( R p 2 ) of 0.9030 and 0.8490 using Deep2D for soluble solids content and DeepFC for pH, respectively. The performance of the deep learning models was compared with five multivariate analysis method. The quantitative analysis showed that the deep learning models had higher R p 2 than all the multivariate analysis methods, indicating better performance. Also, wavelength selection and different pretreatment methods had different effects on different multivariate analysis methods, and the selection of appropriate multivariate analysis methods and pretreatment methods increased more time and computational cost. Unlike multivariate analysis methods, the proposed deep learning models did not require any pretreatment or dimensionality reduction and thus are more suitable for application in high-throughput plant phenotyping platforms. These results indicate that the deep learning models can better predict phenotyping traits of plants using spectral reflectance.

14.
Front Plant Sci ; 13: 1063056, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531364

RESUMEN

The spatial morphological structure of plant leaves is an important index to evaluate crop ideotype. In this study, we characterized the three-dimensional (3D) data of the ear leaf midrib of maize at the grain-filling stage using the 3D digitization technology and obtained the phenotypic values of 15 traits covering four different dimensions of the ear leaf midrib, of which 13 phenotypic traits were firstly proposed for featuring plant leaf spatial structure. Cluster analysis results showed that the 13 traits could be divided into four groups, Group I, -II, -III and -IV. Group I contains HorizontalLength, OutwardGrowthMeasure, LeafAngle and DeviationTip; Group II contains DeviationAngle, MaxCurvature and CurvaturePos; Group III contains LeafLength and ProjectionArea; Group IV contains TipTop, VerticalHeight, UpwardGrowthMeasure, and CurvatureRatio. To investigate the genetic basis of the ear leaf midrib curve, 13 traits with high repeatability were subjected to genome-wide association study (GWAS) analysis. A total of 828 significantly related SNPs were identified and 1365 candidate genes were annotated. Among these, 29 candidate genes with the highest significant and multi-method validation were regarded as the key findings. In addition, pathway enrichment analysis was performed on the candidate genes of traits to explore the potential genetic mechanism of leaf midrib curve phenotype formation. These results not only contribute to further understanding of maize leaf spatial structure traits but also provide new genetic loci for maize leaf spatial structure to improve the plant type of maize varieties.

15.
Front Plant Sci ; 13: 897746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003825

RESUMEN

Plant phenotyping is essential in plant breeding and management. High-throughput data acquisition and automatic phenotypes extraction are common concerns in plant phenotyping. Despite the development of phenotyping platforms and the realization of high-throughput three-dimensional (3D) data acquisition in tall plants, such as maize, handling small-size plants with complex structural features remains a challenge. This study developed a miniaturized shoot phenotyping platform MVS-Pheno V2 focusing on low plant shoots. The platform is an improvement of MVS-Pheno V1 and was developed based on multi-view stereo 3D reconstruction. It has the following four components: Hardware, wireless communication and control, data acquisition system, and data processing system. The hardware sets the rotation on top of the platform, separating plants to be static while rotating. A novel local network was established to realize wireless communication and control; thus, preventing cable twining. The data processing system was developed to calibrate point clouds and extract phenotypes, including plant height, leaf area, projected area, shoot volume, and compactness. This study used three cultivars of wheat shoots at four growth stages to test the performance of the platform. The mean absolute percentage error of point cloud calibration was 0.585%. The squared correlation coefficient R 2 was 0.9991, 0.9949, and 0.9693 for plant height, leaf length, and leaf width, respectively. The root mean squared error (RMSE) was 0.6996, 0.4531, and 0.1174 cm for plant height, leaf length, and leaf width. The MVS-Pheno V2 platform provides an alternative solution for high-throughput phenotyping of low individual plants and is especially suitable for shoot architecture-related plant breeding and management studies.

16.
PLoS One ; 16(1): e0241528, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33434222

RESUMEN

Image processing technologies are available for high-throughput acquisition and analysis of phenotypes for crop populations, which is of great significance for crop growth monitoring, evaluation of seedling condition, and cultivation management. However, existing methods rely on empirical segmentation thresholds, thus can have insufficient accuracy of extracted phenotypes. Taking maize as an example crop, we propose a phenotype extraction approach from top-view images at the seedling stage. An end-to-end segmentation network, named PlantU-net, which uses a small amount of training data, was explored to realize automatic segmentation of top-view images of a maize population at the seedling stage. Morphological and color related phenotypes were automatic extracted, including maize shoot coverage, circumscribed radius, aspect ratio, and plant azimuth plane angle. The results show that the approach can segment the shoots at the seedling stage from top-view images, obtained either from the UAV or tractor-based high-throughput phenotyping platform. The average segmentation accuracy, recall rate, and F1 score are 0.96, 0.98, and 0.97, respectively. The extracted phenotypes, including maize shoot coverage, circumscribed radius, aspect ratio, and plant azimuth plane angle, are highly correlated with manual measurements (R2 = 0.96-0.99). This approach requires less training data and thus has better expansibility. It provides practical means for high-throughput phenotyping analysis of early growth stage crop populations.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Fenotipo , Plantones/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Agricultura
17.
AoB Plants ; 13(5): plab055, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34603653

RESUMEN

Geometric plant modelling is crucial in in silico plants. Existing geometric modelling methods have focused on the topological structure and basic organ profiles, simplifying the morphological features. However, the models cannot effectively differentiate cultivars, limiting FSPM application in crop breeding and management. This study proposes a 3D phytomer-based geometric modelling method with maize (Zea Mays) as the representative plant. Specifically, conversion methods between skeleton and mesh models of 3D phytomer are specified. This study describes the geometric modelling of maize shoots and populations by assembling 3D phytomers. Results show that the method can quickly and efficiently construct 3D models of maize plants and populations, with the ability to show morphological, structural and functional differences among four representative cultivars. The method takes into account both the geometric modelling efficiency and 3D detail features to achieve automatic operation of geometric modelling through the standardized description of 3D phytomers. Therefore, this study provides a theoretical and technical basis for the research and application of in silico plants.

18.
Gigascience ; 10(5)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963385

RESUMEN

BACKGROUND: The 3D point cloud is the most direct and effective data form for studying plant structure and morphology. In point cloud studies, the point cloud segmentation of individual plants to organs directly determines the accuracy of organ-level phenotype estimation and the reliability of the 3D plant reconstruction. However, highly accurate, automatic, and robust point cloud segmentation approaches for plants are unavailable. Thus, the high-throughput segmentation of many shoots is challenging. Although deep learning can feasibly solve this issue, software tools for 3D point cloud annotation to construct the training dataset are lacking. RESULTS: We propose a top-to-down point cloud segmentation algorithm using optimal transportation distance for maize shoots. We apply our point cloud annotation toolkit for maize shoots, Label3DMaize, to achieve semi-automatic point cloud segmentation and annotation of maize shoots at different growth stages, through a series of operations, including stem segmentation, coarse segmentation, fine segmentation, and sample-based segmentation. The toolkit takes ∼4-10 minutes to segment a maize shoot and consumes 10-20% of the total time if only coarse segmentation is required. Fine segmentation is more detailed than coarse segmentation, especially at the organ connection regions. The accuracy of coarse segmentation can reach 97.2% that of fine segmentation. CONCLUSION: Label3DMaize integrates point cloud segmentation algorithms and manual interactive operations, realizing semi-automatic point cloud segmentation of maize shoots at different growth stages. The toolkit provides a practical data annotation tool for further online segmentation research based on deep learning and is expected to promote automatic point cloud processing of various plants.


Asunto(s)
Curaduría de Datos , Zea mays , Algoritmos , Reproducibilidad de los Resultados , Programas Informáticos
19.
Plant Phenomics ; 2020: 1848437, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33313542

RESUMEN

Plant phenotyping technologies play important roles in plant research and agriculture. Detailed phenotypes of individual plants can guide the optimization of shoot architecture for plant breeding and are useful to analyze the morphological differences in response to environments for crop cultivation. Accordingly, high-throughput phenotyping technologies for individual plants grown in field conditions are urgently needed, and MVS-Pheno, a portable and low-cost phenotyping platform for individual plants, was developed. The platform is composed of four major components: a semiautomatic multiview stereo (MVS) image acquisition device, a data acquisition console, data processing and phenotype extraction software for maize shoots, and a data management system. The platform's device is detachable and adjustable according to the size of the target shoot. Image sequences for each maize shoot can be captured within 60-120 seconds, yielding 3D point clouds of shoots are reconstructed using MVS-based commercial software, and the phenotypic traits at the organ and individual plant levels are then extracted by the software. The correlation coefficient (R 2) between the extracted and manually measured plant height, leaf width, and leaf area values are 0.99, 0.87, and 0.93, respectively. A data management system has also been developed to store and manage the acquired raw data, reconstructed point clouds, agronomic information, and resulting phenotypic traits. The platform offers an optional solution for high-throughput phenotyping of field-grown plants, which is especially useful for large populations or experiments across many different ecological regions.

20.
Front Genet ; 11: 571236, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519889

RESUMEN

Dry matter accumulation and partitioning during the early phases of development could significantly affect crop growth and productivity. In this study, the aboveground dry matter (DM), the DM of different organs, and partition coefficients of a maize association mapping panel of 412 inbred lines were evaluated at the third and sixth leaf stages (V3 and V6). Further, the properties of these phenotypic traits were analyzed. Genome-wide association studies (GWAS) were conducted on the total aboveground biomass and the DM of different organs. Analysis of GWAS results identified a total of 1,103 unique candidate genes annotated by 678 significant SNPs (P value < 1.28e-6). A total of 224 genes annotated by SNPs at the top five of each GWAS method and detected by multiple GWAS methods were regarded as having high reliability. Pathway enrichment analysis was also performed to explore the biological significance and functions of these candidate genes. Several biological pathways related to the regulation of seed growth, gibberellin-mediated signaling pathway, and long-day photoperiodism were enriched. The results of our study could provide new perspectives on breeding high-yielding maize varieties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA