Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cancer Sci ; 115(2): 412-426, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38115797

RESUMEN

Docetaxel is the preferred chemotherapeutic agent in patients with castrate-resistant prostate cancer (CRPC). However, patients eventually develop docetaxel resistance and in the absence of effective treatment options. Consequently, it is essential to investigate the mechanisms generating docetaxel resistance and develop novel alternative therapeutic targets. RNA sequencing was undertaken on docetaxel-sensitive and docetaxel-resistant prostate cancer (PCa) cells. Subsequently, chemoresistance, cancer stemness, and lipid metabolism were investigated. To obtain insight into the precise activities and action mechanisms of NOTCH3 in docetaxel-resistant PCa, immunoprecipitation, mass spectrometry, ChIP, luciferase reporter assay, cell metabolism, and animal experiments were performed. Through RNA sequencing analysis, we found that NOTCH3 expression was markedly higher in docetaxel-resistant cells relative to parental cells, and that this trend was continued in docetaxel-resistant PCa tissues. Experiments in vitro and in vivo revealed that NOTCH3 enhanced stemness, lipid metabolism, and docetaxel resistance in PCa. Mechanistically, NOTCH3 is bound to TUBB3 and activates the MAPK signaling pathway. Moreover, NOTCH3 was directly regulated by MEF2A in docetaxel-resistant cells. Notably, targeting NOTCH3 and the MEF2A/TUBB3 signaling axis was related to docetaxel chemoresistance in PCa. Overall, these results demonstrated that NOTCH3 fostered stemness, lipid metabolism, and docetaxel resistance in PCa via the TUBB3 and MAPK signaling pathways. Therefore, NOTCH3 may be employed as a prognostic biomarker in PCa patients. NOTCH3 could be a therapeutic target for PCa patients, particularly those who have developed docetaxel resistance.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias de la Próstata , Masculino , Animales , Humanos , Docetaxel/farmacología , Docetaxel/uso terapéutico , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Transducción de Señal/genética , Tubulina (Proteína)/metabolismo , Receptor Notch3/genética
2.
Mol Pharm ; 21(4): 1998-2011, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38412284

RESUMEN

Pancreatic cancer is a deadly disease with a five-year overall survival rate of around 11%. Chemotherapy is a cornerstone in the treatment of this malignancy, but the intratumoral delivery of chemotherapy drugs is impaired by the highly fibrotic tumor-associated stroma. Irreversible electroporation (IRE) is an ablative technique for treating locally advanced pancreatic cancer. During a typical IRE procedure, high-intensity electric pulses are released to kill tumor cells through the irreversible disruption of the cytoplasm membranes. IRE also induces rapid tumor infiltration by neutrophils and offers an opportunity for neutrophil-mediated drug delivery. We herein showed that the IRE-induced neutrophil trafficking was facilitated by the upregulation of neutrophil chemotaxis and migration as well as the release of several chemoattractants. Doxorubicin-loaded bovine serum albumin nanoparticles were prepared and loaded into neutrophils at a ratio of 9.9 ± 1.2 to 11.7 ± 2.0 pg of doxorubicin per cell. The resultant formulation (NP@NEs) efficiently accumulated in the IRE-treated KPC-A377 murine pancreatic tumors with an uptake value of 10.7 ± 1.5 (percent of injected dose per gram of tissue, abbreviated as %ID/g) at 48 h after intravenous injection. In both Panc02 and KPC-A377 murine pancreatic tumor models, the combination of IRE + NP@NEs inhibited tumor growth more effectively than either monotherapy. The tumors treated with the combination also exhibited the lowest frequency of Ki67+ proliferating cells and the highest abundance of terminal deoxynucleotidyl transferase dUTP nick end labeling+ (TUNEL+) apoptotic cells among the experiment groups. Minimal treatment-associated toxicity was observed. Our findings suggest that neutrophil-mediated delivery of chemotherapy drugs is a useful tool to enhance the response of pancreatic cancer to IRE.


Asunto(s)
Neutrófilos , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Neoplasias Pancreáticas/patología , Inflamación , Electroporación/métodos , Doxorrubicina
3.
In Vivo ; 38(1): 174-183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38148073

RESUMEN

BACKGROUND/AIM: The natural killer (NK) cell function of patients with malignant tumours may be suppressed by deficiency, and the poor prognosis of renal cell carcinoma (RCC) patients may be due to escape from NK cell cytotoxicity, especially with respect to natural cytotoxicity receptors (NCRs) on the NK cell surface. However, the specific mechanism remains unclear. Therefore, in this study, we sought to explore the role of NCR, especially NCR3 splice variants, in the process of NK cell deficiency in RCC patients. MATERIALS AND METHODS: We used flow cytometry to analyse the phenotype of NK cells from the peripheral blood and kidney tumour tissue of RCC patients. The NKp30-mediated NK cell killing function was measured by antibody-dependent cell-mediated cytotoxicity (ADCC) in NK and RCC cell coincubation. We extracted RNA from the peripheral blood mononuclear cells (PBMCs) of RCC patients and renal carcinoma tissue and carried out real-time quantitative PCR to detect the mRNA levels of NKp30a, NKp30b and NKp30c. mRNA expression levels of cytokines (IL-6, IL-8, IL-10, IL-18 and TGF-ß) based on RNA extracted from renal carcinoma tissue and adjacent normal kidney tissues were also measured by real-time quantitative PCR. RESULTS: Regarding the phenotype of NK cells in RCC patients, the proportion of NK cells in tumour tissue was significantly reduced, with changes in the NK cell proportion being most obvious in NKp30+ NK cells. Furthermore, the results of the ADCC function assay showed limited NKp30+ NK cell-mediated cytotoxicity in RCC patients. Through real-time quantitative PCR, we found lower expression of NKp30a and NKp30b, the immunostimulatory splice variants of NCR3 encoding NKp30, in RCC patients. Moreover, expression of activating cytokines (IL-6 and IL-8) in renal cancer tissue was decreased, though inhibitory cytokine (TGF-ß) expression remained unchanged, which may result in an immunosuppressive cytokine microenvironment. CONCLUSION: Decreased expression of immunostimulatory NCR3 splice variants and the inhibitory cytokine microenvironment in RCC patients may contribute to deficient NK cell cytotoxicity and renal carcinoma cell immune escape from NK cell killing, which may provide a theoretical basis for finding new immunotherapeutic targets for RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Leucocitos Mononucleares , Citocinas/genética , Citocinas/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Células Asesinas Naturales , Factor de Crecimiento Transformador beta/metabolismo , ARN Mensajero/metabolismo , ARN/metabolismo , Microambiente Tumoral , Receptor 3 Gatillante de la Citotoxidad Natural/genética , Receptor 3 Gatillante de la Citotoxidad Natural/metabolismo
4.
ACS Omega ; 9(23): 24880-24888, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38882101

RESUMEN

In the maritime setting, Proton Exchange Membrane Fuel Cells (PEMFCs) are subjected to salt spray, posing a risk of contaminating internal components and leading to irreversible degradation in the performance of the PEMFCs. Thus, it is crucial to assess the impact of sodium chloride contamination on PEMFC operation. To address challenges related to prolonged cycle times, high costs, and intricate sample preparation in sodium chloride contamination experiments for PEMFCs, this Article replicates the marine atmospheric conditions using a standard salt spray experimental chamber. The liquid nitrogen fracture method is employed for cost-effective and efficient preparation of experimental samples. The meteorological environment with varying salt content in the salt spray is achieved through precise control of sodium chloride concentration. The Article systematically presents the salt spray experimental method for the membrane electrode assembly (MEA) of PEMFCs. A dedicated salt spray experimental rig was constructed to validate this method for the MEA of PEMFCs. The results indicate that the salt spray experimental method for the MEA of PEMFCs can effectively explore internal component contamination and is well-suited for analyzing the physicochemical effects of NaCl on MEA components, along with their microscopic characterization under salt spray conditions.

5.
In Vivo ; 38(3): 1192-1198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38688651

RESUMEN

BACKGROUND/AIM: Probing brain tumor microvasculature holds significant importance in both basic cancer research and medical practice for tracking tumor development and assessing treatment outcomes. However, few imaging methods commonly used in clinics can noninvasively monitor the brain microvascular network at high precision and without exogenous contrast agents in vivo. The present study aimed to investigate the characteristics of microvasculature during brain tumor development in an orthotopic glioma mouse model. MATERIALS AND METHODS: An orthotopic glioma mouse model was established by surgical orthotopic implantation of U87-MG-luc cells into the mouse brain. Then, optical coherence tomography angiography (OCTA) was utilized to characterize the microvasculature progression within 14 days. RESULTS: The orthotopic glioma mouse model evaluated by bioluminescence imaging and MRI was successfully generated. As the tumor grew, the microvessels within the tumor area slowly decreased, progressing from the center to the periphery for 14 days. CONCLUSION: This study highlights the potential of OCTA as a useful tool to noninvasively visualize the brain microvascular network at high precision and without any exogenous contrast agents in vivo.


Asunto(s)
Neoplasias Encefálicas , Modelos Animales de Enfermedad , Glioma , Tomografía de Coherencia Óptica , Animales , Tomografía de Coherencia Óptica/métodos , Ratones , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/patología , Línea Celular Tumoral , Humanos , Microvasos/diagnóstico por imagen , Microvasos/patología , Imagen por Resonancia Magnética/métodos , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/patología , Angiografía/métodos
6.
J Control Release ; 374: 50-60, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39111599

RESUMEN

Corneal neovascularization (CNV) is a major cause of blindness worldwide. However, the recent drug treatment is limited by repeated administration and low drug bioavailability. In this work, SU6668 (an inhibitor of receptor tyrosine kinases) and indocyanine green (ICG) are loaded onto poly(lactic-co-glycolic acid) (PLGA) nanoparticles, and then coated with anti-VEGFR2 single chain antibody (AbVr2 scFv) genetically engineered cell membrane vesicles. The nanomedicine is delivered via eye drops, and the hyperthermia induced by laser irradiation could block the blood vessels. Meanwhile, the photothermal effect can also cause the degradation of nanomaterials and release chemotherapeutic drugs in the blocked area, thereby continuously inhibit the neovascularization. Furthermore, SU6668 could inhibit the expression of heat shock protein 70 (HSP70), promoting the cell death induced by photothermal effect. In conclusion, the combination of photothermal and chemotherapy drugs provides a novel, effective and safe approach for the treatment of CNV.

7.
J Biophotonics ; : e202400168, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962821

RESUMEN

Fundus photography (FP) is a crucial technique for diagnosing the progression of ocular and systemic diseases in clinical studies, with wide applications in early clinical screening and diagnosis. However, due to the nonuniform illumination and imbalanced intensity caused by various reasons, the quality of fundus images is often severely weakened, brings challenges for automated screening, analysis, and diagnosis of diseases. To resolve this problem, we developed strongly constrained generative adversarial networks (SCGAN). The results demonstrate that the quality of various datasets were more significantly enhanced based on SCGAN, simultaneously more effectively retaining tissue and vascular information under various experimental conditions. Furthermore, the clinical effectiveness and robustness of this model were validated by showing its improved ability in vascular segmentation as well as disease diagnosis. Our study provides a new comprehensive approach for FP and also possesses the potential capacity to advance artificial intelligence-assisted ophthalmic examination.

8.
Mater Today Bio ; 26: 101094, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38854952

RESUMEN

Cerebral ischemia-reperfusion injury (CIRI) is a major challenge to neuronal survival in acute ischemic stroke (AIS). However, effective neuroprotective agents remain to be developed for the treatment of CIRI. In this work, we have developed an Anti-TRAIL protein-modified and indocyanine green (ICG)-responsive nanoagent (Anti-TRAIL-ICG) to target ischemic areas and then reduce CIRI and rescue the ischemic penumbra. In vitro and in vivo experiments have demonstrated that the carrier-free nanoagent can enhance drug transport across the blood-brain barrier (BBB) in stroke mice, exhibiting high targeting ability and good biocompatibility. Anti-TRAIL-ICG nanoagent played a better neuroprotective role by reducing apoptosis and ferroptosis, and significantly improved ischemia-reperfusion injury. Moreover, the multimodal imaging platform enables the dynamic in vivo examination of multiple morphofunctional information, so that the dynamic molecular events of nanoagent can be detected continuously and in real time for early treatment in transient middle cerebral artery occlusion (tMCAO) models. Furthermore, it has been found that Anti-TRAIL-ICG has great potential in the functional reconstruction of neurovascular networks through optical coherence tomography angiography (OCTA). Taken together, our work effectively alleviates CIRI after stoke by blocking multiple cell death pathways, which offers an innovative strategy for harnessing the apoptosis and ferroptosis against CIRI.

9.
Cancer Gene Ther ; 31(8): 1201-1220, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38877164

RESUMEN

Metastasis is the greatest clinical challenge for UTUCs, which may have distinct molecular and cellular characteristics from earlier cancers. Herein, we provide single-cell transcriptome profiles of UTUC para cancer normal tissue, primary tumor lesions, and lymphatic metastases to explore possible mechanisms associated with UTUC occurrence and metastasis. From 28,315 cells obtained from normal and tumor tissues of 3 high-grade UTUC patients, we revealed the origin of UTUC tumor cells and the homology between metastatic and primary tumor cells. Unlike the immunomicroenvironment suppression of other tumors, we found no immunosuppression in the tumor microenvironment of UTUC. Moreover, it is imperative to note that stromal cells are pivotal in the advancement of UTUC. This comprehensive single-cell exploration enhances our comprehension of the molecular and cellular dynamics of metastatic UTUCs and discloses promising diagnostic and therapeutic targets in cancer-microenvironment interactions.


Asunto(s)
Metástasis de la Neoplasia , Microambiente Tumoral , Neoplasias Urológicas , Femenino , Humanos , Masculino , Ácidos Nucleicos Libres de Células/genética , Metástasis de la Neoplasia/genética , RNA-Seq , Análisis de Expresión Génica de una Sola Célula , Microambiente Tumoral/genética , Neoplasias Urológicas/genética , Neoplasias Urológicas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA