Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Immunol ; 20(3): 374, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30733606

RESUMEN

In the version of this article initially published, the Supplementary Data file was an incorrect version. The correct version is now provided. The error has been corrected in the HTML and PDF version of the article.

2.
Nat Immunol ; 19(5): 497-507, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29662170

RESUMEN

The transcription factor c-Maf induces the anti-inflammatory cytokine IL-10 in CD4+ T cells in vitro. However, the global effects of c-Maf on diverse immune responses in vivo are unknown. Here we found that c-Maf regulated IL-10 production in CD4+ T cells in disease models involving the TH1 subset of helper T cells (malaria), TH2 cells (allergy) and TH17 cells (autoimmunity) in vivo. Although mice with c-Maf deficiency targeted to T cells showed greater pathology in TH1 and TH2 responses, TH17 cell-mediated pathology was reduced in this context, with an accompanying decrease in TH17 cells and increase in Foxp3+ regulatory T cells. Bivariate genomic footprinting elucidated the c-Maf transcription-factor network, including enhanced activity of NFAT; this led to the identification and validation of c-Maf as a negative regulator of IL-2. The decreased expression of the gene encoding the transcription factor RORγt (Rorc) that resulted from c-Maf deficiency was dependent on IL-2, which explained the in vivo observations. Thus, c-Maf is a positive and negative regulator of the expression of cytokine-encoding genes, with context-specific effects that allow each immune response to occur in a controlled yet effective manner.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Regulación de la Expresión Génica/inmunología , Redes Reguladoras de Genes/inmunología , Interleucina-2/biosíntesis , Proteínas Proto-Oncogénicas c-maf/inmunología , Animales , Interleucina-2/inmunología , Ratones
3.
Cell ; 160(4): 759-770, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25679765

RESUMEN

Sensitization of the capsaicin receptor TRPV1 is central to the initiation of pathological forms of pain, and multiple signaling cascades are known to enhance TRPV1 activity under inflammatory conditions. How might detrimental escalation of TRPV1 activity be counteracted? Using a genetic-proteomic approach, we identify the GABAB1 receptor subunit as bona fide inhibitor of TRPV1 sensitization in the context of diverse inflammatory settings. We find that the endogenous GABAB agonist, GABA, is released from nociceptive nerve terminals, suggesting an autocrine feedback mechanism limiting TRPV1 sensitization. The effect of GABAB on TRPV1 is independent of canonical G protein signaling and rather relies on close juxtaposition of the GABAB1 receptor subunit and TRPV1. Activating the GABAB1 receptor subunit does not attenuate normal functioning of the capsaicin receptor but exclusively reverts its sensitized state. Thus, harnessing this mechanism for anti-pain therapy may prevent adverse effects associated with currently available TRPV1 blockers.


Asunto(s)
Comunicación Autocrina , Neuronas/metabolismo , Dolor/metabolismo , Receptores de GABA-B/metabolismo , Canales Catiónicos TRPV/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Células Cultivadas , Retroalimentación , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos
4.
Genes Dev ; 32(9-10): 645-657, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29748249

RESUMEN

Cholesterol is a major constituent of myelin membranes, which insulate axons and allow saltatory conduction. Therefore, Schwann cells, the myelinating glia of the peripheral nervous system, need to produce large amounts of cholesterol. Here, we define a crucial role of the transcription factor Maf in myelination and cholesterol biosynthesis and show that Maf acts downstream from Neuregulin1 (Nrg1). Maf expression is induced when Schwann cells begin myelination. Genetic ablation of Maf resulted in hypomyelination that resembled mice with defective Nrg1 signaling. Importantly, loss of Maf or Nrg1 signaling resulted in a down-regulation of the cholesterol synthesis program, and Maf directly binds to enhancers of cholesterol synthesis genes. Furthermore, we identified the molecular mechanisms by which Nrg1 signaling regulates Maf levels. Transcription of Maf depends on calmodulin-dependent kinases downstream from Nrg1, whereas Nrg1-MAPK signaling stabilizes Maf protein. Our results delineate a novel signaling cascade regulating cholesterol synthesis in myelinating Schwann cells.


Asunto(s)
Colesterol/biosíntesis , Vaina de Mielina/metabolismo , Neurregulina-1/metabolismo , Proteínas Proto-Oncogénicas c-maf/metabolismo , Células de Schwann/metabolismo , Transducción de Señal , Animales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Línea Celular , Colesterol/genética , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-maf/genética , Ratas , Ratas Wistar
5.
Cell ; 138(6): 1222-35, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19766573

RESUMEN

Plasticity related gene-1 (PRG-1) is a brain-specific membrane protein related to lipid phosphate phosphatases, which acts in the hippocampus specifically at the excitatory synapse terminating on glutamatergic neurons. Deletion of prg-1 in mice leads to epileptic seizures and augmentation of EPSCs, but not IPSCs. In utero electroporation of PRG-1 into deficient animals revealed that PRG-1 modulates excitation at the synaptic junction. Mutation of the extracellular domain of PRG-1 crucial for its interaction with lysophosphatidic acid (LPA) abolished the ability to prevent hyperexcitability. As LPA application in vitro induced hyperexcitability in wild-type but not in LPA(2) receptor-deficient animals, and uptake of phospholipids is reduced in PRG-1-deficient neurons, we assessed PRG-1/LPA(2) receptor-deficient animals, and found that the pathophysiology observed in the PRG-1-deficient mice was fully reverted. Thus, we propose PRG-1 as an important player in the modulatory control of hippocampal excitability dependent on presynaptic LPA(2) receptor signaling.


Asunto(s)
Proteoglicanos/metabolismo , Sinapsis/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Electroencefalografía , Hipocampo/química , Hipocampo/citología , Hipocampo/metabolismo , Lisofosfolípidos/metabolismo , Ratones , Ratones Noqueados , Proteoglicanos/análisis , Proteoglicanos/genética , Receptores AMPA/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/análisis , Proteínas de Transporte Vesicular/genética
7.
J Biol Chem ; 294(39): 14185-14200, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31350336

RESUMEN

Recoding of UGA codons as selenocysteine (Sec) codons in selenoproteins depends on a selenocysteine insertion sequence (SECIS) in the 3'-UTR of mRNAs of eukaryotic selenoproteins. SECIS-binding protein 2 (SECISBP2) increases the efficiency of this process. Pathogenic mutations in SECISBP2 reduce selenoprotein expression and lead to phenotypes associated with the reduction of deiodinase activities and selenoprotein N expression in humans. Two functions have been ascribed to SECISBP2: binding of SECIS elements in selenoprotein mRNAs and facilitation of co-translational Sec insertion. To separately probe both functions, we established here two mouse models carrying two pathogenic missense mutations in Secisbp2 previously identified in patients. We found that the C696R substitution in the RNA-binding domain abrogates SECIS binding and does not support selenoprotein translation above the level of a complete Secisbp2 null mutation. The R543Q missense substitution located in the selenocysteine insertion domain resulted in residual activity and caused reduced selenoprotein translation, as demonstrated by ribosomal profiling to determine the impact on UGA recoding in individual selenoproteins. We found, however, that the R543Q variant is thermally unstable in vitro and completely degraded in the mouse liver in vivo, while being partially functional in the brain. The moderate impairment of selenoprotein expression in neurons led to astrogliosis and transcriptional induction of genes associated with immune responses. We conclude that differential SECISBP2 protein stability in individual cell types may dictate clinical phenotypes to a much greater extent than molecular interactions involving a mutated amino acid in SECISBP2.


Asunto(s)
Errores Innatos del Metabolismo/genética , Mutación Missense , Proteínas de Unión al ARN/metabolismo , Selenoproteínas/biosíntesis , Animales , Sitios de Unión , Encéfalo/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Fenotipo , Unión Proteica , Estabilidad Proteica , Proteolisis , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ribosomas/metabolismo , Selenocisteína/metabolismo
8.
EMBO J ; 32(14): 2015-28, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23792428

RESUMEN

The protease ß-secretase 1 (Bace1) was identified through its critical role in production of amyloid-ß peptides (Aß), the major component of amyloid plaques in Alzheimer's disease. Bace1 is considered a promising target for the treatment of this pathology, but processes additional substrates, among them Neuregulin-1 (Nrg1). Our biochemical analysis indicates that Bace1 processes the Ig-containing ß1 Nrg1 (IgNrg1ß1) isoform. We find that a graded reduction in IgNrg1 signal strength in vivo results in increasingly severe deficits in formation and maturation of muscle spindles, a proprioceptive organ critical for muscle coordination. Further, we show that Bace1 is required for formation and maturation of the muscle spindle. Finally, pharmacological inhibition and conditional mutagenesis in adult animals demonstrate that Bace1 and Nrg1 are essential to sustain muscle spindles and to maintain motor coordination. Our results assign to Bace1 a role in the control of coordinated movement through its regulation of muscle spindle physiology, and implicate IgNrg1-dependent processing as a molecular mechanism.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/fisiología , Ácido Aspártico Endopeptidasas/fisiología , Husos Musculares/crecimiento & desarrollo , Husos Musculares/fisiología , Neurregulina-1/fisiología , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/deficiencia , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/deficiencia , Ácido Aspártico Endopeptidasas/genética , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Husos Musculares/efectos de los fármacos , Neurregulina-1/deficiencia , Neurregulina-1/genética , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Inhibidores de Proteasas/farmacología , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Procesamiento Proteico-Postraduccional , Desempeño Psicomotor/fisiología , Pirimidinas/farmacología , Transducción de Señal , Tiazinas/farmacología
9.
Proc Natl Acad Sci U S A ; 110(45): 18174-9, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24151333

RESUMEN

During late Schwann cell development, immature Schwann cells segregate large axons from bundles, a process called "axonal radial sorting." Here we demonstrate that canonical Wnt signals play a critical role in radial sorting and assign a role to Wnt and Rspondin ligands in this process. Mice carrying ß-catenin loss-of-function mutations show a delay in axonal sorting; conversely, gain-of-function mutations result in accelerated sorting. Sorting deficits are accompanied by abnormal process extension, differentiation, and aberrant cell cycle exit of the Schwann cells. Using primary cultured Schwann cells, we analyze the upstream effectors, Wnt and Rspondin ligands that initiate signaling, and downstream genetic programs that mediate the Wnt response. Our analysis contributes to a better understanding of the mechanisms of Schwann cell development and fate decisions.


Asunto(s)
Axones/fisiología , Linaje de la Célula/fisiología , Células de Schwann/fisiología , Trombospondinas/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Western Blotting , Cartilla de ADN/genética , Citometría de Flujo , Hibridación in Situ , Ratones , Ratones Transgénicos , Análisis por Micromatrices , Mutación/genética , Comunicación Paracrina/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Nervio Ciático/fisiología , Nervio Ciático/ultraestructura , beta Catenina/genética
10.
J Neurosci ; 33(37): 14738-48, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24027274

RESUMEN

Spatial and temporal cues govern the genesis of a diverse array of neurons located in the dorsal spinal cord, including dI1-dI6, dIL(A), and dIL(B) subtypes, but their physiological functions are poorly understood. Here we generated a new line of conditional knock-out (CKO) mice, in which the homeobox gene Tlx3 was removed in dI5 and dIL(B) cells. In these CKO mice, development of a subset of excitatory neurons located in laminae I and II was impaired, including itch-related GRPR-expressing neurons, PKCγ-expressing neurons, and neurons expressing three neuropeptide genes: somatostatin, preprotachykinin 1, and the gastrin-releasing peptide. These CKO mice displayed marked deficits in generating nocifensive motor behaviors evoked by a range of pain-related or itch-related stimuli. The mutants also failed to exhibit escape response evoked by dynamic mechanical stimuli but retained the ability to sense innocuous cooling and/or warm. Thus, our studies provide new insight into the ontogeny of spinal neurons processing distinct sensory modalities.


Asunto(s)
Ganglios Espinales/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/clasificación , Neuronas/fisiología , Sensación/genética , Animales , Animales Recién Nacidos , Capsaicina/toxicidad , Recuento de Células , Cloroquina/toxicidad , Embrión de Mamíferos , Péptido Liberador de Gastrina/genética , Péptido Liberador de Gastrina/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Oligopéptidos/toxicidad , Dolor/inducido químicamente , Dolor/genética , Dolor/metabolismo , Estimulación Física/efectos adversos , Proteína Quinasa C/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Prurito/etiología , Prurito/metabolismo , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , Somatostatina/genética , Somatostatina/metabolismo , Taquicininas/genética , Taquicininas/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
11.
Nat Metab ; 6(3): 494-513, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38443593

RESUMEN

Long-lasting pain stimuli can trigger maladaptive changes in the spinal cord, reminiscent of plasticity associated with memory formation. Metabolic coupling between astrocytes and neurons has been implicated in neuronal plasticity and memory formation in the central nervous system, but neither its involvement in pathological pain nor in spinal plasticity has been tested. Here we report a form of neuroglia signalling involving spinal astrocytic glycogen dynamics triggered by persistent noxious stimulation via upregulation of the Protein Targeting to Glycogen (PTG) in spinal astrocytes. PTG drove glycogen build-up in astrocytes, and blunting glycogen accumulation and turnover by Ptg gene deletion reduced pain-related behaviours and promoted faster recovery by shortening pain maintenance in mice. Furthermore, mechanistic analyses revealed that glycogen dynamics is a critically required process for maintenance of pain by facilitating neuronal plasticity in spinal lamina 1 neurons. In summary, our study describes a previously unappreciated mechanism of astrocyte-neuron metabolic communication through glycogen breakdown in the spinal cord that fuels spinal neuron hyperexcitability.


Asunto(s)
Astrocitos , Dolor , Ratones , Animales , Astrocitos/metabolismo , Dolor/metabolismo , Dolor/patología , Neuronas/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Glucógeno/metabolismo
12.
Cell Rep ; 42(4): 112295, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36947543

RESUMEN

Corticospinal tract (CST) neurons innervate the deep spinal dorsal horn to sustain chronic neuropathic pain. The majority of neurons targeted by the CST are interneurons expressing the transcription factor c-Maf. Here, we used intersectional genetics to decipher the function of these neurons in dorsal horn sensory circuits. We find that excitatory c-Maf (c-MafEX) neurons receive sensory input mainly from myelinated fibers and target deep dorsal horn parabrachial projection neurons and superficial dorsal horn neurons, thereby connecting non-nociceptive input to nociceptive output structures. Silencing c-MafEX neurons has little effect in healthy mice but alleviates mechanical hypersensitivity in neuropathic mice. c-MafEX neurons also receive input from inhibitory c-Maf and parvalbumin neurons, and compromising inhibition by these neurons caused mechanical hypersensitivity and spontaneous aversive behaviors reminiscent of c-MafEX neuron activation. Our study identifies c-MafEX neurons as normally silent second-order nociceptors that become engaged in pathological pain signaling upon loss of inhibitory control.


Asunto(s)
Neuralgia , Asta Dorsal de la Médula Espinal , Animales , Ratones , Asta Dorsal de la Médula Espinal/patología , Médula Espinal , Células del Asta Posterior/fisiología , Transmisión Sináptica , Interneuronas/fisiología , Proteínas Proto-Oncogénicas c-maf
13.
Proc Natl Acad Sci U S A ; 106(22): 8935-40, 2009 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-19443691

RESUMEN

Rac1 and Cdc42 are small G-proteins that regulate actin dynamics and affect plasma membrane protrusion and vesicle traffic. We used conditional mutagenesis in mice to demonstrate that Rac1 and Cdc42 are essential for myoblast fusion in vivo and in vitro. The deficit in fusion of Rac1 or Cdc42 mutant myoblasts correlates with a deficit in the recruitment of actin fibers and vinculin to myoblast contact sites. Comparison of the changes observed in mutant myogenic cells indicates that Rac1 and Cdc42 function in a nonredundant and not completely overlapping manner during the fusion process. Our genetic analysis demonstrates thus that the function of Rac in myoblast fusion is evolutionarily conserved from insects to mammals and that Cdc42, a molecule hitherto not implicated in myoblast fusion, is essential for the fusion of murine myoblasts.


Asunto(s)
Mioblastos Esqueléticos/fisiología , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Fusión Celular , Drosophila/genética , Evolución Molecular , Ratones , Ratones Transgénicos , Mutagénesis , Mioblastos Esqueléticos/enzimología , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP rac1/genética
14.
Proc Natl Acad Sci U S A ; 106(39): 16704-9, 2009 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-19805360

RESUMEN

The nonreceptor tyrosine phosphatase Shp2 (PTPN11) has been implicated in tyrosine kinase, cytokine, and integrin receptor signaling. We show here that conditional mutation of Shp2 in neural crest cells and in myelinating Schwann cells resulted in deficits in glial development that are remarkably similar to those observed in mice mutant for Neuregulin-1 (Nrg1) or the Nrg1 receptors, ErbB2 and ErbB3. In cultured Shp2 mutant Schwann cells, Nrg1-evoked cellular responses like proliferation and migration were virtually abolished, and Nrg1-dependent intracellular signaling was altered. Pharmacological inhibition of Src family kinases mimicked all cellular and biochemical effects of the Shp2 mutation, implicating Src as a primary Shp2 target during Nrg1 signaling. Together, our genetic and biochemical analyses demonstrate that Shp2 is an essential component in the transduction of Nrg1/ErbB signals.


Asunto(s)
Receptores ErbB/metabolismo , Neurregulina-1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Células de Schwann/metabolismo , Transducción de Señal , Animales , Técnica del Anticuerpo Fluorescente , Ratones , Cresta Neural/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Células de Schwann/enzimología
15.
Dev Biol ; 322(2): 381-93, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18721803

RESUMEN

Dorsal horn neurons express many different neuropeptides that modulate sensory perception like the sensation of pain. Inhibitory neurons of the dorsal horn derive from postmitotic neurons that express Pax2, Lbx1 and Lhx1/5, and diversify during maturation. In particular, fractions of maturing inhibitory neurons express various neuropeptides. We demonstrate here that a coordinate molecular mechanism determines inhibitory and peptidergic fate in the developing dorsal horn. A bHLH factor complex that contains Ptf1a acts as upstream regulator and initiates the expression of several downstream transcription factors in the future inhibitory neurons, of which Pax2 is known to determine the neurotransmitter phenotype. We demonstrate here that dynorphin, galanin, NPY, nociceptin and enkephalin expression depends on Ptf1a, indicating that these neuropeptides are expressed in inhibitory neurons. Furthermore, we show that Neurod1/2/6 and Lhx1/5, which act downstream of Ptf1a, control distinct aspects of peptidergic differentiation. In particular, the Neurod1/2/6 factors are essential for dynorphin and galanin expression, whereas the Lhx1/5 factors are essential for NPY expression. We conclude that a transcriptional network operates in maturing dorsal horn neurons that coordinately determines transmitter and peptidergic fate.


Asunto(s)
Neuropéptidos/biosíntesis , Células del Asta Posterior/embriología , Médula Espinal/embriología , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/embriología , Ganglios Espinales/metabolismo , Perfilación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/metabolismo , Neuropéptidos/metabolismo , Células del Asta Posterior/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo
16.
J Neurosci ; 27(18): 4902-9, 2007 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-17475798

RESUMEN

Distinct types of relay neurons in the hindbrain process somatosensory or viscerosensory information. How neurons choose between these two fates is unclear. We show here that the homeobox gene Lbx1 is essential for imposing a somatosensory fate on relay neurons in the hindbrain. In Lbx1 mutant mice, viscerosensory relay neurons are specified at the expense of somatosensory relay neurons. Thus Lbx1 expression distinguishes between the somatosensory or viscerosensory fate of relay neurons.


Asunto(s)
Proteínas Musculares/genética , Neuronas Aferentes/metabolismo , Rombencéfalo/fisiología , Aferentes Viscerales/metabolismo , Animales , Genes Homeobox/fisiología , Ligamiento Genético/fisiología , Ratones , Ratones Mutantes , Proteínas Musculares/biosíntesis , Proteínas Musculares/fisiología , Neuronas , Neuronas Aferentes/citología , Rombencéfalo/citología , Rombencéfalo/metabolismo , Aferentes Viscerales/citología
17.
Neuron ; 93(1): 179-193, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27989460

RESUMEN

Painful mechanical stimuli activate multiple peripheral sensory afferent subtypes simultaneously, including nociceptors and low-threshold mechanoreceptors (LTMRs). Using an optogenetic approach, we demonstrate that LTMRs do not solely serve as touch receptors but also play an important role in acute pain signaling. We show that selective activation of neuropeptide Y receptor-2-expressing (Npy2r) myelinated A-fiber nociceptors evokes abnormally exacerbated pain, which is alleviated by concurrent activation of LTMRs in a frequency-dependent manner. We further show that spatial summation of single action potentials from multiple NPY2R-positive afferents is sufficient to trigger nocifensive paw withdrawal, but additional simultaneous sensory input from LTMRs is required for normal well-coordinated execution of this reflex. Thus, our results show that combinatorial coding of noxious and tactile sensory input is required for normal acute mechanical pain signaling. Additionally, we established a causal link between precisely defined neural activity in functionally identified sensory neuron subpopulations and nocifensive behavior and pain.


Asunto(s)
Potenciales de Acción , Dolor Agudo/genética , Mecanorreceptores/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Neuronas/metabolismo , Nocicepción/fisiología , Nociceptores/metabolismo , Sumación de Potenciales Postsinápticos , Animales , Conducta Animal , Ganglios Espinales/citología , Inmunohistoquímica , Ratones , Fibras Nerviosas Mielínicas/fisiología , Dolor Nociceptivo , Optogenética , Dolor , Técnicas de Placa-Clamp , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo , Reflejo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tacto/fisiología
19.
Science ; 353(6306): 1393-1398, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27562954

RESUMEN

Body temperature homeostasis is critical for survival and requires precise regulation by the nervous system. The hypothalamus serves as the principal thermostat that detects and regulates internal temperature. We demonstrate that the ion channel TRPM2 [of the transient receptor potential (TRP) channel family] is a temperature sensor in a subpopulation of hypothalamic neurons. TRPM2 limits the fever response and may detect increased temperatures to prevent overheating. Furthermore, chemogenetic activation and inhibition of hypothalamic TRPM2-expressing neurons in vivo decreased and increased body temperature, respectively. Such manipulation may allow analysis of the beneficial effects of altered body temperature on diverse disease states. Identification of a functional role for TRP channels in monitoring internal body temperature should promote further analysis of molecular mechanisms governing thermoregulation and foster the genetic dissection of hypothalamic circuits involved with temperature homeostasis.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Fiebre/fisiopatología , Calor , Hipotermia/fisiopatología , Área Preóptica/fisiología , Canales Catiónicos TRPM/fisiología , Animales , Regulación de la Temperatura Corporal/genética , Femenino , Fiebre/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Neuronas/fisiología , Área Preóptica/citología , Canales Catiónicos TRPM/genética
20.
Nat Neurosci ; 18(1): 10-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25469543

RESUMEN

Human sensory neurons are inaccessible for functional examination, and thus little is known about the mechanisms mediating touch sensation in humans. Here we demonstrate that the mechanosensitivity of human embryonic stem (hES) cell-derived touch receptors depends on PIEZO2. To recapitulate sensory neuron development in vitro, we established a multistep differentiation protocol and generated sensory neurons via the intermediate production of neural crest cells derived from hES cells or human induced pluripotent stem (hiPS) cells. The generated neurons express a distinct set of touch receptor-specific genes and convert mechanical stimuli into electrical signals, their most salient characteristic in vivo. Strikingly, mechanosensitivity is lost after CRISPR/Cas9-mediated PIEZO2 gene deletion. Our work establishes a model system that resembles human touch receptors, which may facilitate mechanistic analysis of other sensory subtypes and provide insight into developmental programs underlying sensory neuron diversity.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Canales Iónicos/fisiología , Mecanorreceptores/fisiología , Mecanotransducción Celular/fisiología , Células Receptoras Sensoriales/fisiología , Tacto/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Diferenciación Celular/fisiología , Femenino , Humanos , Canales Iónicos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/fisiología , Cresta Neural/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA