Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938098

RESUMEN

A novel mesophilic, hydrogenotrophic methanogen, strain CYW5T, was isolated from a sediment sample of a piston core collected from submarine mud volcano MV5 located in the offshore area of southwestern Taiwan. Cells of strain CYW5T were irregular coccids, 0.5-1.0 µm in diameter and lysed easily by 0.01 % sodium dodecyl sulphate (SDS) treatment. Strain CYW5Tutilized formate or hydrogen plus carbon dioxide as catabolic substrates for methanogenesis. The optimal growth conditions were 37 °C, 0.043-0.085 M NaCl and pH 6.02-7.32. The genomic DNA G+C content calculated from the genome sequence of strain CYW5T was 56.2 mol%. The results of phylogenetic analysis of 16S rRNA gene sequences indicated that strain CYW5T represented a member of the family Methanomicrobiaceae in the order Methanomicrobiales, and was closely related to the members of the genus Methanogenium. The most closely related species was Methanogenium cariaci JR1T (94.9 % of 16S rRNA gene sequence identity). The average nucleotide identity and average amino acid identity values between strain CYW5T and members of the family Methanomicrobiaceae were 74.7-78.5 % and 49.1-64.9%, respectively. Although many of the morphological and physiological characteristics of strain CYW5T and the species of the genus Methanogenium were similar, they were distinguishable by the differences in genomic G+C content and temperature, NaCl and pH ranges for growth. Based on these phenotypic, phylogenetic and genomic results, we propose that strain CYW5T represents a novel species, of a novel genus, named Methanovulcanius yangii gen. nov., sp. nov. The type strain is CYW5T (=BCRC AR10048T=DSM 100756T=NBRC 111404T).


Asunto(s)
Euryarchaeota , Cloruro de Sodio , Composición de Base , Filogenia , ARN Ribosómico 16S/genética , Taiwán , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , Peróxido de Hidrógeno , Methanomicrobiaceae
2.
Int J Syst Evol Microbiol ; 68(4): 1378-1383, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29509131

RESUMEN

A psychrotolerant, methylotrophic methanogen, strain YSF-03T, was isolated from the saline meromictic Lake Shira in Siberia. Cells of strain YSF-03T were non-motile, irregular cocci and 0.8-1.2 µm in diameter. The methanogenic substrates utilized by strain YSF-03T were methanol and trimethylamine. The temperature range of growth for strain YSF-03T was from 0 to 37 °C. The optimum growth conditions were 30-37 °C, pH 7.0-7.4 and 0.17 M NaCl. The G+C content of the genome of strain YSF-03T was 41.3 mol%. Phylogenetic analysis revealed that strain YSF-03T was most closely related to Methanolobus profundi MobMT (98.15 % similarity in 16S rRNA gene sequence). Genome relatedness between strain YSF-03T and MobMT was computed using the Genome-to-Genome Distance Calculator and average nucleotide identity, which gave values of 23.5 and 79.3 %, respectively. Based on the morphological, phenotypic, phylogenetic and genomic relatedness data presented here, it is evident that strain YSF-03T represents a novel species of the genus Methanolobus, for which the name Methanolobus psychrotolerans sp. nov. is proposed. The type strain is YSF-03T (=BCRC AR10049T=DSM 104044T=NBRC 112514T).


Asunto(s)
Lagos/microbiología , Methanosarcinaceae/clasificación , Filogenia , Salinidad , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Methanosarcinaceae/genética , Methanosarcinaceae/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Siberia
3.
Int J Syst Evol Microbiol ; 65(7): 2141-2147, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25855623

RESUMEN

A mesophilic, hydrogenotrophic methanogen, strain S3Fa(T), was isolated from sediments collected by Ocean Researcher I cruise ORI-934 in 2010 near the submarine mud volcano MV4 located at the upper slope of south-west Taiwan. The methanogenic substrates utilized by strain S3Fa(T) were formate and H2/CO2 but not acetate, secondary alcohols, methylamines, methanol or ethanol. Cells of strain S3Fa(T) were non-motile, irregular cocci, 0.5-1.0 µm in diameter. The surface-layer protein showed an Mr of 128,000.The optimum growth conditions were 37 °C, pH 7.1 and 0.17 M NaCl. The DNA G+C content of the genome of strain S3Fa(T) was 62.3 mol%. Phylogenetic analysis revealed that strain S3Fa(T) was most closely related to Methanoculleus marisnigri JR1(T) (99.3% 16S rRNA gene sequence similarity). Genome relatedness between strain S3Fa(T) and Methanoculleus marisnigri JR1(T) was computed using both genome-to-genome distance analysis (GGDA) and average nucleotide identity (ANI) with values of 46.3-55.5% and 93.08%, respectively. Based on morphological, phenotypic, phylogenetic and genomic relatedness data, it is evident that strain S3Fa(T) represents a novel species of the genus Methanoculleus, for which the name Methanoculleus sediminis sp. nov. is proposed. The type strain is S3Fa(T) ( = BCRC AR10044(T) = DSM 29354(T)).


Asunto(s)
Sedimentos Geológicos/microbiología , Respiraderos Hidrotermales/microbiología , Methanomicrobiaceae/clasificación , Filogenia , Composición de Base , ADN de Archaea/genética , Methanomicrobiaceae/genética , Methanomicrobiaceae/aislamiento & purificación , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Taiwán
4.
Int J Syst Evol Microbiol ; 65(Pt 3): 1044-1049, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25575827

RESUMEN

A mesophilic, hydrogenotrophic methanogen, strain CYW4(T), was isolated from deep-sea sediment obtained by the Ocean Researcher I cruiser, ORI-961, in 2011. The sediment was from the deformation front area offshore of south-western Taiwan. Here, seismic reflections indicated that methane hydrates were abundant. The methanogenic substrates utilized by strain CYW4(T) were formate and H2/CO2, but not acetate, secondary alcohols, methylamines, methanol and ethanol. Cells of strain CYW4(T) were non-motile, irregular cocci and 0.6-1.5 µm in diameter. The S-layer protein had an Mr of 112 000. The optimum growth conditions were at 37 °C, pH 8.1 and 0.08 M NaCl. Growth of the strain was stimulated by acetate. The G+C content of the chromosomal DNA of strain CYW4(T) was 61 mol%. Phylogenetic analysis revealed that strain CYW4(T) was most closely related to Methanoculleus marisnigri JR1(T) (96.82 % 16S rRNA gene sequence similarity). Based on the morphological, phenotypic and phylogenetic characteristics presented here, it is evident that strain CYW4(T) represents a novel species of the genus Methanoculleus, and the name Methanoculleus taiwanensis sp. nov. is proposed. The type strain is CYW4(T) ( = BCRC AR10043(T) = NBRC 110782(T)). The optical density of cultures of strain CYW4(T) dropped abruptly upon entering the stationary growth phase. During this time numerous particles of approximately 50 nm in diameter were observed on and around the cells. This suggests that strain CYW4(T) harbours a lytic virus that is induced in the stationary phase, which is of interest because only a few lytic viruses have been reported in methanogens.


Asunto(s)
Sedimentos Geológicos/microbiología , Metano/metabolismo , Methanomicrobiaceae/clasificación , Filogenia , Composición de Base , ADN de Archaea/genética , Methanomicrobiaceae/genética , Methanomicrobiaceae/aislamiento & purificación , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Taiwán
5.
Sci Rep ; 10(1): 19530, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177547

RESUMEN

Over the past decades, one main issue that has emerged in ecological and environmental research is how losses in biodiversity influence ecosystem dynamics and functioning, and consequently human society. Although biodiversity is a common indicator of ecosystem functioning, it is difficult to measure biodiversity in microbial communities exposed to subtle or chronic environmental perturbations. Consequently, there is a need for alternative bioindicators to detect, measure, and monitor gradual changes in microbial communities against these slight, chronic, and continuous perturbations. In this study, microbial networks before and after subtle perturbations by adding S. acidaminiphila showed diverse topological niches and 4-node motifs in which microbes with co-occurrence patterns played the central roles in regulating and adjusting the intertwined relationships among microorganisms in response to the subtle environmental changes. This study demonstrates that microbial networks are a good bioindicator for chronic perturbation and should be applied in a variety of ecological investigations.


Asunto(s)
Reactores Biológicos/microbiología , Microbiota/fisiología , Stenotrophomonas , Anaerobiosis , Biodiversidad , Análisis de la Demanda Biológica de Oxígeno , Biomarcadores Ambientales , Metano/biosíntesis , Microbiota/genética , Modelos Biológicos , ARN Ribosómico 16S , Stenotrophomonas/fisiología
6.
Mar Genomics ; 47: 100673, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30935830

RESUMEN

To date, the only methanoarchaea isolated directly from methane hydrate bearing sediments were Methanoculleus submarinus Nankai-1T and Methanoculleus sp. MH98A. Here, we provide the genome of Methanoculleus taiwanensis CYW4T isolated from the deep-sea subseafloor sediment at the Deformation Front offshore southwestern Taiwan, where methane hydrate deposits are likely located. Through comparative genomics analyses of nine Methanoculleus strains from various habitats, 2-3 coding genes for trehalose synthases were found in all nine Methanoculleus genomes, which were not detected in other methanogens and are therefore suggested as a signature of genus Methanoculleus among methane-producing archaea. In addition, the structural genes adjacent to trehalose synthase genes are comprised of the signaling module of Per-Arnt-Sim (PAS) domain-containing proteins, Hsp20 family proteins, arabinose efflux permeases and multiple surface proteins with fasciclin-like (FAS) repeat. This indicates that trehalose synthase gene clusters in Methanoculleus might play roles in the response to various stresses and regulate carbon storage and modification of surface proteins through accumulation of trehalose. The non-gas hydrate-associated Methanoculleus strains harbor carbon-monoxide dehydrogenase (cooS/acsA) genes, which are important for the conversion of acetate to methane at the step of CO oxidation/CO2 reduction in acetoclastic methanogens and further implies that these strains may be able to utilize CO for methanogenesis in their natural habitats. In addition, both genomes of M. bourgensis strains MS2T and MAB1 harbor highly abundant transposase genes, which may be disseminated from microbial communities in their habitats, sewage treatment plants and biogas reactors, which are breeding grounds for antibiotic resistance. Through comparative genomic analyses, we gained insight into understanding the life of strictly anaerobic methane-producing archaea in various habitats, especially in methane-based deep-sea ecosystems.


Asunto(s)
Genoma Arqueal , Glucosiltransferasas/genética , Methanomicrobiaceae/genética , Glucosiltransferasas/metabolismo , Methanomicrobiaceae/enzimología , ARN de Archaea/análisis , ARN Ribosómico 16S/análisis
7.
Sci Rep ; 9(1): 6560, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-31024021

RESUMEN

Microbial communities are key drivers of ecosystem processes, but their behavior in disturbed environments is difficult to measure. How microbial community composition and function respond disturbances is a common challenge in biomedical, environmental, agricultural, and bioenergy research. A novel way to solve this problem is to use a systems-level perspective and describe microbial communities as networks. Based on a mesophilic anaerobic digestion system of swine manure as a tool, we propose a simple framework to investigate changes in microbial communities via compositions, metabolic pathways, genomic properties and interspecies relationships in response to a long-term temperature disturbance. After temperature disturbance, microbial communities tend towards a competitive interaction network with higher GC content and larger genome size. Based on microbial interaction networks, communities responded to the disturbance by showing a transition from acetotrophic (Methanotrichaceae and Methanosarcinaceae) to methylotrophic methanogens (Methanomassiliicoccaceae and Methanobacteriaceae) and a fluctuation in rare biosphere taxa. To conclude, this study may be important for exploring the dynamic relationships between disturbance and microbial communities as a whole, as well as for providing researchers with a better understanding of how changes in microbial communities relate to ecological processes.


Asunto(s)
Microbiota/fisiología , Anaerobiosis/genética , Anaerobiosis/fisiología , Animales , Composición de Base/genética , Composición de Base/fisiología , Reactores Biológicos/microbiología , Genoma Bacteriano/genética , Methanobacteriaceae/genética , Methanobacteriaceae/fisiología , Methanomicrobiaceae/genética , Methanomicrobiaceae/fisiología , ARN Ribosómico 16S/genética , Porcinos , Temperatura
8.
PLoS One ; 12(7): e0181395, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28732056

RESUMEN

Anaerobic digestion (AnD) is a microbiological process that converts organic waste materials into biogas. Because of its high methane content, biogas is a combustible energy source and serves as an important environmental technology commonly used in the management of animal waste generated on large animal farms. Much work has been done on hardware design and process engineering for the generation of biogas. However, little is known about the complexity of the microbiology in this process. In particular, how microbes interact in the digester and eventually breakdown and convert organic matter into biogas is still regarded as a "black box." We used 16S rRNA sequencing as a tool to study the microbial community in laboratory hog waste digesters under tightly controlled conditions, and systematically unraveled the distinct interaction networks of two microbial communities from mesophilic (MAnD) and thermophilic anaerobic digestion (TAnD). Under thermophilic conditions, the well-known association between hydrogen-producing bacteria, e.g., Ruminococcaceae and Prevotellaceae, and hydrotrophic methanogens, Methanomicrobiaceae, was reverse engineered by their interactive topological niches. The inferred interaction network provides a sketch enabling the determination of microbial interactive relationships that conventional strategy of finding differential taxa was hard to achieve. This research is still in its infancy, but it can help to depict the dynamics of microbial ecosystems and to lay the groundwork for understanding how microorganisms cohabit in the anaerobic digester.


Asunto(s)
Bacterias Anaerobias/fisiología , Reactores Biológicos , Estiércol/microbiología , Interacciones Microbianas , Microbiota/fisiología , ARN Ribosómico 16S/genética , Anaerobiosis , Animales , Bacterias Anaerobias/clasificación , Bacterias Anaerobias/genética , Biocombustibles , Heces/microbiología , Microbiota/genética , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ARN , Porcinos , Temperatura , Residuos
9.
Front Microbiol ; 8: 525, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28424669

RESUMEN

The concerted activity of intestinal microbes is crucial to the health and development of their host organisms. Investigation of microbial interactions in the gut should deepen our understanding of how these micro-ecosystems function. Due to advances in Next Generation Sequencing (NGS) technologies, various bioinformatic strategies have been proposed to investigate these microbial interactions. However, due to the complexity of the intestinal microbial community and difficulties in monitoring their interactions, at present there is a gap between the theory and biological application. In order to construct and validate microbial relationships, we first induce a community shift from simple to complex by manipulating artificial hibernation (AH) in the treefrog Polypedates megacephalus. To monitor community growth and microbial interactions, we further performed a time-course screen using a 16S rRNA amplicon approach and a Lotka-Volterra model. Lotka-Volterra models, also known as predator-prey equations, predict the dynamics of microbial communities and how communities are structured and sustained. An interaction network of gut microbiota at the genus level in the treefrog was constructed using Metagenomic Microbial Interaction Simulator (MetaMIS) package. The interaction network obtained had 1,568 commensal, 1,737 amensal, 3,777 mutual, and 3,232 competitive relationships, e.g., Lactococcus garvieae has a commensal relationship with Corynebacterium variabile. To validate the interacting relationships, the gut microbe composition was analyzed after probiotic trials using single strain (L. garvieae, C. variabile, and Bacillus coagulans, respectively) and a combination of L. garvieae, C. variabile, and B. coagulans, because of the cooperative relationship among their respective genera identified in the interaction network. After a 2 week trial, we found via 16S rRNA amplicon analysis that the combination of cooperative microbes yielded significantly higher probiotic concentrations than single strains, and the immune response (interleukin-10 expression) also significantly changed in a manner consistent with improved probiotic effects. By taking advantage of microbial community shift from simple to complex, we thus constructed a reliable microbial interaction network, and validated it using probiotic strains as a test system.

10.
Genome Announc ; 4(2)2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27103730

RESUMEN

Here, we announce the genome sequence of ITALIC! Methanoculleus sediminisS3Fa(T)(DSM 29354(T)), a strict anaerobic methanoarchaeon, which was isolated from sediments near the submarine mud volcano MV4 located offshore in southwestern Taiwan. The 2.49-Mb genome consists of 2,459 predicted genes, 3 rRNAs, 48 tRNAs, and 1 ncRNA. The sequence of this novel strain may provide more information for species delineation and the roles that this strain plays in the unique marine mud volcano habitat.

11.
Sci Rep ; 5: 16326, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26541644

RESUMEN

The aim of this study was to classify certain environmental haloarchaea and methanoarchaea using matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and to expand the archaeal mass spectral database. A total of 69 archaea were collected including type strains and samples isolated locally from different environments. For extraction of the haloarchaeal total cell peptides/proteins, a simple method of acetonitrile extraction was developed. Cluster analysis conducted with the MALDI-TOF MS data overcame the high divergence in intragenomic 16S rRNA sequences in haloarchaea and clearly distinguished Methanohalophilus mahii from M. portucalensis. Putative biomarkers that can distinguish several particular archaeal genera were also assigned. In conclusion, this study expands the mass spectral database of peptide/protein fingerprints from bacteria and fungi to the archaea domain and provides a rapid identification platform for environmental archaeal samples.


Asunto(s)
Archaea/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA