Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 212(12): 1945-1957, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700419

RESUMEN

The cytosolic detection of pathogen-derived nucleic acids has evolved as an essential strategy for host innate immune defense in mammals. One crucial component in this process is the stimulator of IFN genes (STING), which acts as a vital signaling adaptor, connecting the cytosolic detection of DNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) to the downstream type I IFN signaling pathway. However, this process remains elusive in invertebrates. In this study, we present evidence demonstrating that STING, an ortholog found in a marine invertebrate (shrimp) called Litopenaeus vannamei, can directly detect DNA and initiate an IFN-like antiviral response. Unlike its homologs in other eukaryotic organisms, which exclusively function as sensors for cyclic dinucleotides, shrimp STING has the ability to bind to both double-stranded DNA and cyclic dinucleotides, including 2'3'-cGAMP. In vivo, shrimp STING can directly sense DNA nucleic acids from an infected virus, accelerate IFN regulatory factor dimerization and nuclear translocation, induce the expression of an IFN functional analog protein (Vago4), and finally establish an antiviral state. Taken together, our findings unveil a novel double-stranded DNA-STING-IKKε-IRF-Vago antiviral axis in an arthropod, providing valuable insights into the functional origins of DNA-sensing pathways in evolution.


Asunto(s)
Proteínas de la Membrana , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/inmunología , Penaeidae/inmunología , Penaeidae/virología , Inmunidad Innata/inmunología , Transducción de Señal/inmunología , Interferones/metabolismo , Interferones/inmunología , Nucleótidos Cíclicos/metabolismo , Nucleótidos Cíclicos/inmunología
2.
J Immunol ; 213(1): 63-74, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38767414

RESUMEN

The JAK-STAT pathway is a central communication node for various biological processes. Its activation is characterized by phosphorylation and nuclear translocation of the transcription factor STAT. The regulatory balance of JAK-STAT signaling is important for maintenance of immune homeostasis. Protein tyrosine phosphatases (PTPs) induce dephosphorylation of tyrosine residues in intracellular proteins and generally function as negative regulators in cell signaling. However, the roles of PTPs in JAK-STAT signaling, especially in invertebrates, remain largely unknown. Pacific white shrimp Penaeus vannamei is currently an important model for studying invertebrate immunity. This study identified a novel member of the dual-specificity phosphatase (DUSP) subclass of the PTP superfamily in P. vannamei, named PvDUSP14. By interacting with and dephosphorylating STAT, PvDUSP14 inhibits the excessive activation of the JAK-STAT pathway, and silencing of PvDUSP14 significantly enhances humoral and cellular immunity in shrimp. The promoter of PvDUSP14 contains a STAT-binding motif and can be directly activated by STAT, suggesting that PvDUSP14 is a regulatory target gene of the JAK-STAT pathway and mediates a negative feedback regulatory loop. This feedback loop plays a role in maintaining homeostasis of JAK-STAT signaling and is involved in antibacterial and antiviral immune responses in shrimp. Therefore, the current study revealed a novel inhibitory mechanism of JAK-STAT signaling, which is of significance for studying the regulatory mechanisms of immune homeostasis in invertebrates.


Asunto(s)
Retroalimentación Fisiológica , Quinasas Janus , Penaeidae , Factores de Transcripción STAT , Transducción de Señal , Animales , Penaeidae/inmunología , Penaeidae/genética , Transducción de Señal/inmunología , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Fosforilación , Fosfatasas de Especificidad Dual/metabolismo , Fosfatasas de Especificidad Dual/genética , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/metabolismo
3.
J Virol ; : e0068624, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888343

RESUMEN

Nervous necrosis virus (NNV), an aquatic RNA virus belonging to Betanodavirus, infects a variety of marine and freshwater fishes, leading to massive mortality of cultured larvae and juveniles and substantial economic losses. The enzyme cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) is widely recognized as a central component in the innate immune response to cytosolic DNA derived from different pathogens. However, little is known about the response of cGAS to aquatic RNA viruses. This study found that Epinephelus coioides cGAS (EccGAS) overexpression inhibited NNV replication, whereas EccGAS silencing promoted NNV replication. The anti-NNV activity of EccGAS was involved in interferon (IFN) signaling activation including tumor necrosis factor receptor-associated factor family member-associated NF-kappa-B activator-binding kinase 1 (TBK1) phosphorylation, interferon regulatory factor 3 (IRF3) nuclear translocation, and the subsequent induction of IFNc and ISGs. Interestingly, NNV employed its capsid protein (CP) or Protein A (ProA) to negatively or positively modulate EccGAS-mediated IFN signaling by simultaneously targeting EccGAS. CP interacted with EccGAS via the arm-P, S-P, and SD structural domains and promoted its polyubiquitination with K48 and K63 linkages in an EcUBE3C (the ubiquitin ligase)-dependent manner, ultimately leading to EccGAS degradation. Conversely, ProA bound to EccGAS and inhibited its ubiquitination and degradation. In regulating EccGAS protein content, CP's inhibitory action was more pronounced than ProA's protective effect, allowing successful NNV replication. These novel findings suggest that NNV CP and ProA dynamically modulate the EccGAS-mediated IFN signaling pathway to facilitate the immune escape of NNV. Our findings shed light on a novel mechanism of virus-host interaction and provide a theoretical basis for the prevention and control of NNV.IMPORTANCEAs a well-known DNA sensor, cGAS is a pivotal component in innate anti-viral immunity to anti-DNA viruses. Although there is growing evidence regarding the function of cGAS in the resistance to RNA viruses, the mechanisms by which cGAS participates in RNA virus-induced immune responses in fish and how aquatic viruses evade cGAS-mediated immune surveillance remain elusive. Here, we investigated the detailed mechanism by which EccGAS positively regulates the anti-NNV response. Furthermore, NNV CP and ProA interacted with EccGAS, regulating its protein levels through ubiquitin-proteasome pathways, to dynamically modulate the EccGAS-mediated IFN signaling pathway and facilitate viral evasion. Notably, NNV CP was identified to promote the ubiquitination of EccGAS via ubiquitin ligase EcUBE3C. These findings unveil a novel strategy for aquatic RNA viruses to evade cGAS-mediated innate immunity, enhancing our understanding of virus-host interactions.

4.
PLoS Pathog ; 19(4): e1011341, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37083840

RESUMEN

Infecting a wide range of hosts, members of Reovirales (formerly Reoviridae) consist of a genome with different numbers of segmented double stranded RNAs (dsRNA) encapsulated by a proteinaceous shell and carry out genome replication and transcription inside the virion. Several cryo-electron microscopy (cryo-EM) structures of reoviruses with 9, 10 or 11 segmented dsRNA genomes have revealed insights into genome arrangement and transcription. However, the structure and genome arrangement of 12-segmented Reovirales members remain poorly understood. Using cryo-EM, we determined the structure of mud crab reovirus (MCRV), a 12-segmented dsRNA virus that is a putative member of Reovirales in the non-turreted Sedoreoviridae family, to near-atomic resolutions with icosahedral symmetry (3.1 Å) and without imposing icosahedral symmetry (3.4 Å). These structures revealed the organization of the major capsid proteins in two layers: an outer T = 13 layer consisting of VP12 trimers and unique VP11 clamps, and an inner T = 1 layer consisting of VP3 dimers. Additionally, ten RNA dependent RNA polymerases (RdRp) were well resolved just below the VP3 layer but were offset from the 5-fold axes and arranged with D5 symmetry, which has not previously been seen in other members of Reovirales. The N-termini of VP3 were shown to adopt four unique conformations; two of which anchor the RdRps, while the other two conformations are likely involved in genome organization and capsid stability. Taken together, these structures provide a new level of understanding for capsid stabilization and genome organization of segmented dsRNA viruses.


Asunto(s)
Orthoreovirus , Virus ARN , Reoviridae , Proteínas de la Cápside/genética , Cápside , Microscopía por Crioelectrón , Reoviridae/genética
5.
J Virol ; 97(11): e0128923, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37933966

RESUMEN

IMPORTANCE: Global aquaculture production yielded a record of 122.9 million tons in 2022. However, ~10% of farmed aquatic animal production is lost each year due to various infectious diseases, resulting in substantial economic waste. Therefore, the development of vaccines is important for the prevention and control of aquatic infectious diseases. Gene-deletion live attenuated vaccines are efficacious because they mimic natural pathogen infection and generate a strong antibody response, thus showing good potential for administration via immersion. However, most gene-deletion viruses still have residual virulence, and thus, gene-deletion immersion vaccines for aquatic viruses are rarely developed. In this study, an orf074r deletion strain (Δorf074r) of ISKNV with residual virulence was constructed, and an immunization process was developed to reduce its residual virulence at 22°C, thereby making it a potential immersion vaccine against ISKNV. Our work will aid in the development of an aquatic gene-deletion live-attenuated immersion vaccine.


Asunto(s)
Enfermedades de los Peces , Iridoviridae , Vacunas Virales , Animales , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/virología , Inmersión , Inmunización/métodos , Inmunización/veterinaria , Iridoviridae/genética , Vacunas Atenuadas , Virulencia , Frío
6.
J Virol ; 97(7): e0085723, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37382530

RESUMEN

Infectious diseases seriously threaten sustainable aquaculture development, resulting in more than $10 billion in economic losses annually. Immersion vaccines are emerging as the key technology for aquatic disease prevention and control. Here, a safe and efficacious candidate immersion vaccine strain (Δorf103r/tk) of infectious spleen and kidney necrosis virus (ISKNV), in which the orf103r and tk genes were knocked out by homologous recombination, is described. Δorf103r/tk was severely attenuated in mandarin fish (Siniperca chuatsi), inducing mild histological lesions, a mortality rate of only 3%, and eliminated within 21 days. A single Δorf103r/tk immersion-administered dose provided long-lasting protection rates over 95% against lethal ISKNV challenge. Δorf103r/tk also robustly stimulated the innate and adaptive immune responses. For example, interferon expression was significantly upregulated, and the production of specific neutralizing antibodies against ISKNV was markedly induced postimmunization. This work provides proof-of-principle evidence for orf103r- and tk-deficient ISKNV for immersion vaccine development to prevent ISKNV disease in aquaculture production. IMPORTANCE Global aquaculture production reached a record of 122.6 million tons in 2020, with a total value of 281.5 billion U.S. dollars (USD). However, approximately 10% of farmed aquatic animal production is lost due to various infectious diseases, resulting in more than 10 billion USD of economic waste every year. Therefore, the development of vaccines to prevent and control aquatic infectious diseases is of great significance. Infectious spleen and kidney necrosis virus (ISKNV) infection occurs in more than 50 species of freshwater and marine fish and has caused great economic losses to the mandarin fish farming industry in China during the past few decades. Thus, it is listed as a certifiable disease by the World Organization for Animal Health (OIE). Herein, a safe and efficient double-gene-deleted live attenuated immersion vaccine against ISKNV was developed, providing an example for the development of aquatic gene-deleted live attenuated immersion vaccine.


Asunto(s)
Enfermedades de los Peces , Iridoviridae , Vacunas Virales , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Peces , Inmersión , Iridoviridae/genética , Iridoviridae/inmunología , Iridoviridae/aislamiento & purificación , Iridoviridae/patogenicidad , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología , Línea Celular , Expresión Génica/inmunología , Anticuerpos Antivirales/inmunología
7.
J Virol ; 97(6): e0049523, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37289063

RESUMEN

Viral diseases are a significant risk to the aquaculture industry. Transient receptor potential vanilloid 4 (TRPV4) has been reported to be involved in regulating viral activity in mammals, but its regulatory effect on viruses in teleost fish remains unknown. Here, the role of the TRPV4-DEAD box RNA helicase 1 (DDX1) axis in viral infection was investigated in mandarin fish (Siniperca chuatsi). Our results showed that TRPV4 activation mediates Ca2+ influx and facilitates infectious spleen and kidney necrosis virus (ISKNV) replication, whereas this promotion was nearly eliminated by an M709D mutation in TRPV4, a channel Ca2+ permeability mutant. The concentration of cellular Ca2+ increased during ISKNV infection, and Ca2+ was critical for viral replication. TRPV4 interacted with DDX1, and the interaction was mediated primarily by the N-terminal domain (NTD) of TRPV4 and the C-terminal domain (CTD) of DDX1. This interaction was attenuated by TRPV4 activation, thereby enhancing ISKNV replication. DDX1 could bind to viral mRNAs and facilitate ISKNV replication, which required the ATPase/helicase activity of DDX1. Furthermore, the TRPV4-DDX1 axis was verified to regulate herpes simplex virus 1 replication in mammalian cells. These results suggested that the TRPV4-DDX1 axis plays an important role in viral replication. Our work provides a novel molecular mechanism for host involvement in viral regulation, which would be of benefit for new insights into the prevention and control of aquaculture diseases. IMPORTANCE In 2020, global aquaculture production reached a record of 122.6 million tons, with a total value of $281.5 billion. Meanwhile, frequent outbreaks of viral diseases have occurred in aquaculture, and about 10% of farmed aquatic animal production has been lost to infectious diseases, resulting in more than $10 billion in economic losses every year. Therefore, an understanding of the potential molecular mechanism of how aquatic organisms respond to and regulate viral replication is of great significance. Our study suggested that TRPV4 enables Ca2+ influx and interactions with DDX1 to collectively promote ISKNV replication, providing novel insights into the roles of the TRPV4-DDX1 axis in regulating the proviral effect of DDX1. This advances our understanding of viral disease outbreaks and would be of benefit for studies on preventing aquatic viral diseases.


Asunto(s)
ARN Helicasas DEAD-box , Infecciones por Virus ADN , Iridovirus , Canales Catiónicos TRPV , Replicación Viral , Animales , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Infecciones por Virus ADN/veterinaria , Enfermedades de los Peces/virología , Peces , Iridovirus/fisiología , Canales Catiónicos TRPV/genética
8.
J Virol ; 97(11): e0048023, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37877715

RESUMEN

IMPORTANCE: Viruses are able to mimic the physiological or pathological mechanism of the host to favor their infection and replication. Virus-mock basement membrane (VMBM) is a Megalocytivirus-induced extracellular structure formed on the surface of infected cells and structurally and functionally mimics the basement membrane of the host. VMBM provides specific support for lymphatic endothelial cells (LECs) rather than blood endothelial cells to adhere to the surface of infected cells, which constitutes a unique phenomenon of Megalocytivirus infection. Here, the structure of VMBM and the interactions between VMBM components and LECs have been analyzed at the molecular level. The regulatory effect of VMBM components on the proliferation and migration of LECs has also been explored. This study helps to understand the mechanism of LEC-specific attachment to VMBM and to address the issue of where the LECs come from in the context of Megalocytivirus infection.


Asunto(s)
Membrana Basal , Células Endoteliales , Iridoviridae , Vasos Linfáticos , Membrana Basal/metabolismo , Membrana Basal/virología , Células Endoteliales/citología , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Iridoviridae/fisiología , Vasos Linfáticos/citología , Proliferación Celular , Movimiento Celular , Vasos Sanguíneos/citología , Interacciones Microbiota-Huesped
9.
Fish Shellfish Immunol ; 145: 109345, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154761

RESUMEN

Type I interferon (IFN) plays a crucial role in the antiviral immune response. Nervous necrosis virus (NNV) and Micropterus salmoides rhabdovirus (MSRV) are the most important viruses in cultured larvae and juveniles, causing great economic losses to fish farming. To better understand the antiviral activities and immunoregulatory role of IFN from orange-spotted grouper (Epinephelus coioides), EcIFNh was cloned from NNV infected sample. EcIFNh has an open reading frame (ORF) of 552 bp and encodes a polypeptide of 183 amino acids. Phylogenetic tree analysis showed that EcIFNh was clustered into the IFNh branch. The tissue distribution analysis revealed that EcIFNh was highly expressed in the liver and brain of healthy orange-spotted grouper. The mRNA levels of EcIFNh were significantly upregulated after poly (I:C) stimulation and NNV or MSRV infection. Furthermore, the promoter of EcIFNh was characterized and significantly activated by EcMDA5, EcMAVS, EcSTING, EcIRF3, and EcIRF7 in the luciferase activity assays. We found that EcIFNh overexpression resisted the replication of NNV and MSRV, while EcIFNh silencing facilitated NNV replication in GB cells. In addition, EcIFNh recombinant protein (rEcIFNh) enhanced the immune response by inducing the expression of ISGs in vivo and in vitro, suggesting the potential application of rEcIFNh for anti-NNV and anti-MSRV. Taken together, our research may offer the foundation for virus-IFN system interaction in orange-spotted grouper.


Asunto(s)
Lubina , Enfermedades de los Peces , Nodaviridae , Infecciones por Virus ARN , Rhabdoviridae , Animales , Filogenia , Proteínas de Peces/genética , Poli I-C/farmacología , Necrosis , Nodaviridae/fisiología , Inmunidad Innata
10.
Appl Microbiol Biotechnol ; 108(1): 59, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38180551

RESUMEN

Increasing evidence suggests that intestine microorganisms are closely related to shrimp growth, but there is no existing experiment to prove this hypothesis. Here, we compared the intestine bacterial community of fast- and slow-growing shrimp at the same developmental stage with a marked difference in body size. Our results showed that the intestine bacterial communities of slow-growing shrimp exhibited less diversity but were more heterogeneous than those of fast-growing shrimp. Uncultured_bacterium_g_Candidatus Bacilloplasma, Tamlana agarivorans, Donghicola tyrosinivorans, and uncultured_bacterium_f_Flavobacteriaceae were overrepresented in the intestines of fast-growing shrimp, while Shimia marina, Vibrio sp., and Vibrio campbellii showed the opposite trends. We further found that the bacterial community composition was significantly correlated with shrimp length, and some bacterial species abundances were found to be significantly correlated with shrimp weight and length, including T. agarivorans and V. campbellii, which were chosen as indicators for a reverse gavage experiment. Finally, T. agarivorans was found to significantly promote shrimp growth after the experiment. Collectively, these results suggest that intestine bacterial community could be important factors in determining the growth of shrimp, indicating that specific bacteria could be tested in further studies against shrimp growth retardation. KEY POINTS: • A close relationship between intestine bacterial community and shrimp growth was proven by controllable experiments. • The bacterial signatures of the intestine were markedly different between slow- and fast-growing shrimp, and the relative abundances of some intestine bacterial species were correlated significantly with shrimp body size. • Reverse gavage by Tamlana agarivorans significantly promoted shrimp growth.


Asunto(s)
Alteromonadaceae , Penaeidae , Animales , Alimentos Marinos
11.
Fish Shellfish Immunol ; 142: 109123, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37813154

RESUMEN

The NF-κB pathway plays an important role in immune regulation. Basigin, an immunoglobulin superfamily membrane protein, is involved in the activation of NF-κB. However, its role in NF-κB signaling in response to pathogen infection remains unclear. In this study, we identified the Basigin gene from Pacific white shrimp, Penaeus vannamei, a representative species for studying the innate immune system of invertebrates. Basigin promoted the degradation of the IκB homolog Cactus, facilitated the nuclear translocation of the NF-κB family member Dorsal, and positively regulated the expression of Dorsal pathway downstream antimicrobial peptide genes. Interestingly, recombinant Basigin protein could bind a variety of Gram-positive and Gram-negative bacteria. Silencing of Basigin inhibited the Dorsal signaling activated by V. parahaemolyticus infection and significantly decreased the survival rate of V. parahaemolyticus-infected shrimp. The expression levels of the antimicrobial peptides ALF1 and ALF2 were downregulated, and the phagocytosis of hemocytes was attenuated in Basigin-silenced shrimp. Similar results were observed in shrimp treated with a recombinant extracellular region of the Basigin protein that was able to compete with endogenous Basigin. Therefore, to the best of our knowledge, this study is the first to demonstrate the function of Basigin as a pathogen recognition receptor that activates NF-κB signaling for antibacterial immunity in shrimp.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Virus del Síndrome de la Mancha Blanca 1 , Animales , FN-kappa B/metabolismo , Basigina , Antibacterianos , Proteínas de Artrópodos , Bacterias Gramnegativas , Bacterias Grampositivas , Inmunidad Innata/genética , Vibrio parahaemolyticus/fisiología , Virus del Síndrome de la Mancha Blanca 1/fisiología
12.
Fish Shellfish Immunol ; 132: 108450, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36442705

RESUMEN

Chitinases, a group of glycosylase hydrolases that can hydrolyze chitin, are involved in immune regulation in animals. White spot syndrome virus (WSSV) causes huge losses to crustacean aquaculture every year. We identified a novel chitinase Chi6 from Pacific white shrimp Penaeus vannamei, which contains a catalytic domain but no chitin-binding domain. The Chi6 expression was regulated by multiple immune signaling pathways and increased after immune stimulations. Silencing of Chi6 by RNAi in vivo did not affect Vibrio parahaemolyticus infection, but significantly increased the survival rate of WSSV-infected shrimp. The expression of multiple WSSV immediate early and structural genes was also decreased upon Chi6 silencing. The recombinant Chi6 protein showed no effect on bacterial growth but could attenuate shrimp hemocyte phagocytosis. The mRNA levels of several key elements and downstream genes of the MAPK and Dorsal pathways in Chi6-silenced shrimp were significantly up-regulated, suggesting an inhibitory effect of Chi6 on humoral immune response. Moreover, Chi6 enhanced the regulatory effect of Dorsal on the expression of WSSV ie1 gene. Therefore, Chi6 promotes WSSV infection through immunosuppression and regulation of WSSV gene expression. Targeting Chi6 could be a potential strategy for controlling WSSV disease in shrimp farming.


Asunto(s)
Quitinasas , Penaeidae , Vibriosis , Virus del Síndrome de la Mancha Blanca 1 , Animales , Virus del Síndrome de la Mancha Blanca 1/fisiología , Quitinasas/genética , Proteínas Recombinantes , Inmunosupresores
13.
Fish Shellfish Immunol ; 139: 108917, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37355218

RESUMEN

The Hippo-Yki signaling pathway plays a crucial role in numerous biological processes. Previous studies have demonstrated the significance of signal transduction components of the Hippo pathway in the immune response of shrimp. In this study, the downstream transcription factor of Hippo signaling, Scalloped, was analyzed in the context of Vibrio parahaemolyticus infection in Pacific white shrimp, Penaeus vannamei. Upon bacterial and fungal infections, the expression of Scalloped was upregulated in hemocytes. Scalloped was found to localize in the nucleus and interact with the Hippo pathway downstream transcriptional co-activator Yki. With the assistance of Yki, Scalloped activated the promoter of Cactus, a cytoplasmic inhibitor of the NF-κB pathway, leading to the inhibition of the nuclear translocation of the NF-κB family member Dorsal in shrimp. By inhibiting the Dorsal pathway, Scalloped reduced the expression of immune functional proteins and negatively regulated the immune response against bacterial infection in shrimp. RNAi-mediated silencing of Scalloped significantly enhanced the survival rate of V. parahaemolyticus-infected shrimp and reduced the bacterial load in tissues. These findings demonstrate the potential of Scalloped as a therapeutic target for vibriosis in crustaceans and contribute to our understanding of the shrimp's antibacterial defense and the functional roles of Hippo signaling in animal immunity.


Asunto(s)
Penaeidae , Vibriosis , Vibrio parahaemolyticus , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , FN-kappa B/metabolismo , Vía de Señalización Hippo , Vibrio parahaemolyticus/fisiología , Vibriosis/veterinaria , Inmunidad Innata/genética
14.
J Fish Dis ; 46(11): 1173-1181, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37470197

RESUMEN

Yellowfin seabream (Acanthopagrus latus) is one of the most commercially important marine fish in China. In this study, a new continuous cell line, named ALS cells, was developed from the spleen tissue of A. latus. The cell line was maintained in Dulbecco's modified Eagle medium/Nutrient Mixture F-12 Ham (DMEM/F-12) supplemented with 10% fetal bovine serum (FBS) and successfully cultured up to 50 passages. The cell line was authenticated by amplifying and sequencing mitochondrial cytochrome C oxidase subunit-I (coi-I) gene. The ALS cell line had the maximum growth rate in DMEM/F-12 medium containing 20% FBS at 27°C. Chromosome number analysis showed that the ALS cells have a modal diploid chromosome number of 34. The ALS cell line was transfected with the pEGFP-N1 plasmid, and green fluorescence was observed. The ALS cell line was used for testing Mandarinfish ranavirus (MRV) susceptibility, and the cytopathic effects in the cell line were observed at 4 days post-infection (dpi). Furthermore, the susceptibility of the ALS cell line to MRV and the levels of MRV mRNA and viral loads were found to be significantly increased at 1-7 dpi. This study revealed that the ALS cell line could be useful for molecular, virological, and biotechnological studies on yellowfin seabream.

15.
J Fish Dis ; 46(3): 189-199, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36441809

RESUMEN

Mandarinfish ranavirus (MRV), also known as a variant of largemouth bass virus (LMBV), is an emerging pathogen in mandarinfish aquaculture. In this study, monoclonal antibodies (mAbs) against MRV were produced and characterized, and 7 mAbs were obtained through Western blotting screening and all 7 mAbs specifically recognized MRV/LMBV but not several piscine iridoviruses as ISKNV, GIV and TFV. By LC MS/MS analysis, the recognized viral proteins by seven mAbs were identified as MRV-pORF47L, MRV-pORF55R, MRV-pORF57L, MRV-pORF77L and MRV-pORF78L, respectively, and all five viral proteins are late expression structural proteins by Western blotting. Based on mAb 1C4, immuno-histochemistry and immuno-histo-fluorescence were performed to re-assess the tissue tropism of MRV. The result showed that abundant reactive signals were observed in infected spleen, kidney as well as intestine and pyloric caecum. Real-time quantitative PCR also demonstrated that spleen as well as pyloric caecum and intestines are the major target tissue upon MRV infection. In infected intestines and pyloric caecum, numerous enlarged, multinucleated cells with intracytoplasmic inclusions were identified as the target cells of MRV, suggesting that MRV serves as a digestive tract pathogen to mandarinfish, which may explain why acute infection of MRV can cause the typical clinicopathology featured by severe ascites.


Asunto(s)
Lubina , Enfermedades de los Peces , Iridoviridae , Ranavirus , Animales , Anticuerpos Monoclonales , Espectrometría de Masas en Tándem , Proteínas Virales , Ciego
16.
Fish Shellfish Immunol ; 123: 335-347, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35217194

RESUMEN

Infectious spleen and kidney necrosis virus (ISKNV), the type species of the genus Megalocytivirus, infects a variety of teleost fish species and causes substantial losses in the aquaculture industry worldwide. ISKNV ORF71L is 1611 bp in length, encodes a 537-amino-acid peptide and was previously identified as a viral structural protein in the ISKNV virion. In this study, the ORF71L deletion mutant virus strain ISKNV-Δ71 was obtained through a homologous recombination approach. The multistep growth curves showed that ISKNV-Δ71 replication was faster than ISKNV-WT replication in mandarin fish fry cells (MFF-1 cells) before 48 h post-infection (hpi). The cumulative mortality of ISKNV-Δ71-infected mandarin fish (Siniperca chuatsi) was lower than that of fish infected with ISKNV-WT. The copy numbers of viral genome equivalents (GEs) in ISKNV-Δ71-infected mandarin fish spleens were also lower than those in ISKNV-WT-infected spleens. Deletion of ORF71L resulted in ISKNV virulence attenuation in mandarin fish. Furthermore, we found that the number of melanomacrophage centers (MMCs) in ISKNV-Δ71-infected mandarin fish spleens was higher than that in ISKNV-WT-infected mandarin fish spleens. Transcriptomic analysis showed that the cytokine-cytokine receptor interaction pathway had the most significant change between ISKNV-Δ71- and ISKNV-WT-infected MFF-1 cells. These results indicated ORF71L is a virulence-related gene of ISKNV. ORF71L could be considered as a potential target for the development of engineered attenuated live vaccines via multigene deletion or as a potential insertion site for exogenous protein expression.


Asunto(s)
Infecciones por Virus ADN , Enfermedades de los Peces , Iridoviridae , Perciformes , Animales , Peces/genética , Peces/metabolismo , Iridoviridae/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virulencia
17.
Fish Shellfish Immunol ; 127: 187-194, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716970

RESUMEN

The kelch motif-containing proteins are widely present in organisms and known to be involved in various biological processes, but their roles in immunity remain unclear. In this study, a kelch motif-containing protein KLHDC2 was identified from Pacific white shrimp Penaeus vannamei and its immune function was investigated. The klhdc2 gene was widely expressed in shrimp tissues and its protein product was mainly present in the nucleus. Expression of klhdc2 was regulated by shrimp NF-κB family members Dorsal and Relish, and changed after immune stimulation. KLHDC2 could enhance the immune defense against Vibrio parahaemolyticus in shrimp but inhibit that against white spot syndrome virus (WSSV). Further analyses showed that KLHDC2 did not affect the phagocytosis of hemocytes but regulated the expression of a series of immune effector genes. KLHDC2 has a complex regulatory relationship with Dorsal and Relish, which may partly contribute to its positive role in antibacterial response by regulating humoral immunity. Moreover, the regulatory effect of KLHDC2 on WSSV ie1 gene contributed to its negative effect on antiviral response. Therefore, the current study enrichs the knowledge on the Kelch family and helps to learn more about the regulatory mechanism of shrimp immunity.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Virus del Síndrome de la Mancha Blanca 1 , Animales , Proteínas de Artrópodos , Inmunidad Innata/genética , Secuencia Kelch , Fagocitosis , Vibrio parahaemolyticus/fisiología , Virus del Síndrome de la Mancha Blanca 1/fisiología
18.
Fish Shellfish Immunol ; 127: 148-154, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35714896

RESUMEN

Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus that infects a number of marine and freshwater fishes, causing huge economic losses in aquaculture. The ISKNV infection leads to increase of reducing power in cells. As the antibiotic neomycin can promote the production of reactive oxygen species (ROS) in animal cells, in the current study, the potential therapeutic effect of neomycin on ISKNV infection was explored. We showed that neomycin could decrease the reducing power in cultured MFF-1 cells and inhibit ISKNV infection by antagonizing the shift of the cellular redox balance toward reduction. In vivo experiments further demonstrated that neomycin treatment significantly suppresses ISKNV infection in mandarin fish. Expression of the major capsid protein (MCP) and the proportion of infected cells in tissues were down-regulated after neomycin treatment. Furthermore, neomycin showed complex effects on expression of a set of antiviral related genes of the host. Taking together, the current study suggested that the viral-induced redox imbalance in the infected cells could be used as a target for suppressing ISKNV infection. Neomycin can be potentially utilized for therapeutic treatment of Megalocytivirus diseases by antagonizing intracellular redox changes.


Asunto(s)
Infecciones por Virus ADN , Enfermedades de los Peces , Iridoviridae , Animales , Infecciones por Virus ADN/veterinaria , Peces , Glutatión , Iridoviridae/genética , Neomicina/farmacología
19.
J Immunol ; 204(11): 2918-2930, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32303554

RESUMEN

The JAK-STAT and NF-κB pathways are conserved cellular signaling cascades orchestrating a variety of biological processes. The regulatory interactions between these two pathways have been well studied in vertebrates but less concerned in invertebrates, hindering further understanding of immune signaling evolution. The Pacific white shrimp Litopenaeus vannamei is now an important model for studying invertebrate immunity and cellular signaling mechanisms. In this study, the microRNA-1 (miR-1) molecule from L. vannamei was identified, and its mature and precursor sequences were analyzed. The miR-1 promoter contained a STAT binding site and its transcriptional activity could be regulated by the JAK-STAT pathway. The target gene of miR-1 was identified as MyD88, the upstream component of the Dorsal (the NF-κB homolog) pathway. By suppressing the expression of MyD88, miR-1 attenuated activation of the Dorsal pathway. With miR-1 as the mediator, STAT also exerted a negative regulatory effect on the Dorsal pathway. Moreover, miR-1 was involved in regulation of the expression of a set of immune effector genes and the phagocytic activity of hemocytes and had an inhibitory or excitatory effect on antibacterial or antiviral responses, respectively. Taken together, the current study revealed a microRNA-mediated inhibition of the NF-κB pathway by the JAK-STAT pathway in an invertebrate, which could contribute to immune homeostasis and shaping immune responses.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Hemocitos/fisiología , MicroARNs/genética , Factor 88 de Diferenciación Mieloide/genética , FN-kappa B/metabolismo , Penaeidae/fisiología , Animales , Proteínas de Artrópodos/genética , Inmunidad/genética , Inmunidad Innata , Quinasas Janus/metabolismo , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Fagocitosis , Regiones Promotoras Genéticas/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal
20.
Ecotoxicol Environ Saf ; 232: 113289, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35144128

RESUMEN

Antibiotic resistance genes (ARGs) are ubiquitous in nature, especially in the current era of antibiotic abuse, and their existence is a global concern. In the present study, we discovered that Antarctic krill-related culturable bacteria are resistant to ß-lactam, tetracyclines, aminoglycosides, and sulphamethoxazole/trimethoprim based on the antibiotic efflux mechanism. In addition, the co-occurrence of ARGs with insertion sequence (IS) (tnpA, IS91) and Intl1 on the isolates and the phylogenetic analysis results of the whole-genome revealed low-frequency ARG transfer events, implying the transferability of these ARGs. These findings provide an early warning for the wide assessment of Antarctic microbiota in the spread of ARGs. Our work provides novel insights into understanding ARGs in culturable host-associated microorganisms, and their ecological risks and has important implications for future risk assessments of antibiotic resistance in extreme environments.


Asunto(s)
Antibacterianos , Euphausiacea , Animales , Bacterias/genética , Euphausiacea/genética , Genes Bacterianos , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA