Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Chem Biol ; 19(1): 45-54, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36138140

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 13 (Cas13) has been rapidly developed for nucleic-acid-based diagnostics by using its characteristic collateral activity. Despite the recent progress in optimizing the Cas13 system for the detection of nucleic acids, engineering Cas13 protein with enhanced collateral activity has been challenging, mostly because of its complex structural dynamics. Here we successfully employed a novel strategy to engineer the Leptotrichia wadei (Lwa)Cas13a by inserting different RNA-binding domains into a unique active-site-proximal loop within its higher eukaryotes and prokaryotes nucleotide-binding domain. Two LwaCas13a variants showed enhanced collateral activity and improved sensitivity over the wild type in various buffer conditions. By combining with an electrochemical method, our variants detected the SARS-CoV-2 genome at attomolar concentrations from both inactive viral and unextracted clinical samples, without target preamplification. Our engineered LwaCas13a enzymes with enhanced collateral activity are ready to be integrated into other Cas13a-based platforms for ultrasensitive detection of nucleic acids.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , Ácidos Nucleicos/genética , Genoma , Sistemas CRISPR-Cas/genética
2.
Nano Lett ; 22(9): 3668-3677, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35439419

RESUMEN

The real-time monitoring of neurochemical release in vivo plays a critical role in understanding the biochemical process of the complex nervous system. Current technologies for such applications, including microdialysis and fast-scan cyclic voltammetry, suffer from limited spatiotemporal resolution or poor selectivity. Here, we report a soft implantable aptamer-graphene microtransistor probe for real-time monitoring of neurochemical release. As a demonstration, we show the monitoring of dopamine with nearly cellular-scale spatial resolution, high selectivity (dopamine sensor >19-fold over norepinephrine), and picomolar sensitivity, simultaneously. Systematic benchtop evaluations, ex vivo experiments, and in vivo studies in mice models highlight the key features and demonstrate the capability of capturing the dopamine release dynamics evoked by pharmacological stimulation, suggesting the potential applications in basic neuroscience studies and studying neurological disease-related processes. The developed system can be easily adapted for monitoring other neurochemicals and drugs by simply replacing the aptamers functionalized on the graphene microtransistors.


Asunto(s)
Dopamina , Grafito , Animales , Ratones , Norepinefrina , Oligonucleótidos
3.
Angew Chem Int Ed Engl ; 62(17): e202214987, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36710268

RESUMEN

Polymerase chain reaction (PCR)-based nucleic acid testing has played a critical role in disease diagnostics, pathogen surveillance, and many more. However, this method requires a long turnaround time, expensive equipment, and trained personnel, limiting its widespread availability and diagnostic capacity. On the other hand, the clustered regularly interspaced short palindromic repeats (CRISPR) technology has recently demonstrated capability for nucleic acid detection with high sensitivity and specificity. CRISPR-mediated biosensing holds great promise for revolutionizing nucleic acid testing procedures and developing point-of-care diagnostics. This review focuses on recent developments in both fundamental CRISPR biochemistry and CRISPR-based nucleic acid detection techniques. Four ongoing research hotspots in molecular diagnostics-target preamplification-free detection, microRNA (miRNA) testing, non-nucleic-acid detection, and SARS-CoV-2 detection-are also covered.


Asunto(s)
Técnicas Biosensibles , COVID-19 , MicroARNs , Humanos , Sistemas CRISPR-Cas , Patología Molecular , SARS-CoV-2 , Prueba de COVID-19
4.
Anal Chem ; 94(24): 8605-8617, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35678711

RESUMEN

Neurochemical corelease has received much attention in understanding brain activity and cognition. Despite many attempts, the multiplexed monitoring of coreleased neurochemicals with spatiotemporal precision and minimal crosstalk using existing methods remains challenging. Here, we report a soft neural probe for multiplexed neurochemical monitoring via the electrografting-assisted site-selective functionalization of aptamers on graphene field-effect transistors (G-FETs). The neural probes possess excellent flexibility, ultralight mass (28 mg), and a nearly cellular-scale dimension of 50 µm × 50 µm for each G-FET. As a demonstration, we show that G-FETs with electrochemically grafted molecular linkers (-COOH or -NH2) and specific aptamers can be used to monitor serotonin and dopamine with high sensitivity (limit of detection: 10 pM) and selectivity (dopamine sensor >22-fold over norepinephrine; serotonin sensor >17-fold over dopamine). In addition, we demonstrate the feasibility of the simultaneous monitoring of dopamine and serotonin in a single neural probe with minimal crosstalk and interferences in phosphate-buffered saline, artificial cerebrospinal fluid, and harvested mouse brain tissues. The stability studies show that multiplexed neural probes maintain the capability for simultaneously monitoring dopamine and serotonin with minimal crosstalk after incubating in rat cerebrospinal fluid for 96 h, although a reduced sensor response at high concentrations is observed. Ex vivo studies in harvested mice brains suggest potential applications in monitoring the evoked release of dopamine and serotonin. The developed multiplexed detection methodology can also be adapted for monitoring other neurochemicals, such as metabolites and neuropeptides, by simply replacing the aptamers functionalized on the G-FETs.


Asunto(s)
Dopamina , Grafito , Animales , Encéfalo/metabolismo , Dopamina/metabolismo , Grafito/química , Ratones , Norepinefrina , Oligonucleótidos/metabolismo , Ratas , Serotonina/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(43): 21427-21437, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31601737

RESUMEN

Pharmacology and optogenetics are widely used in neuroscience research to study the central and peripheral nervous systems. While both approaches allow for sophisticated studies of neural circuitry, continued advances are, in part, hampered by technology limitations associated with requirements for physical tethers that connect external equipment to rigid probes inserted into delicate regions of the brain. The results can lead to tissue damage and alterations in behavioral tasks and natural movements, with additional difficulties in use for studies that involve social interactions and/or motions in complex 3-dimensional environments. These disadvantages are particularly pronounced in research that demands combined optogenetic and pharmacological functions in a single experiment. Here, we present a lightweight, wireless, battery-free injectable microsystem that combines soft microfluidic and microscale inorganic light-emitting diode probes for programmable pharmacology and optogenetics, designed to offer the features of drug refillability and adjustable flow rates, together with programmable control over the temporal profiles. The technology has potential for large-scale manufacturing and broad distribution to the neuroscience community, with capabilities in targeting specific neuronal populations in freely moving animals. In addition, the same platform can easily be adapted for a wide range of other types of passive or active electronic functions, including electrical stimulation.


Asunto(s)
Optogenética/métodos , Farmacología/métodos , Animales , Encéfalo/metabolismo , Química Encefálica , Channelrhodopsins/metabolismo , Estimulación Eléctrica , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética/instrumentación , Farmacología/instrumentación , Prótesis e Implantes , Tecnología Inalámbrica/instrumentación
6.
Angew Chem Int Ed Engl ; 61(32): e202203826, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35559592

RESUMEN

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have recently received notable attention for their applications in nucleic acid detection. Despite many attempts, the majority of current CRISPR-based biosensors in infectious respiratory disease diagnostic applications still require target preamplifications. This study reports a new biosensor for amplification-free nucleic acid detection via harnessing the trans-cleavage mechanism of Cas13a and ultrasensitive graphene field-effect transistors (gFETs). CRISPR Cas13a-gFET achieves the detection of SARS-CoV-2 and respiratory syncytial virus (RSV) genome down to 1 attomolar without target preamplifications. Additionally, we validate the detection performance using clinical SARS-CoV-2 samples, including those with low viral loads (Ct value >30). Overall, these findings establish our CRISPR Cas13a-gFET among the most sensitive amplification-free nucleic acid diagnostic platforms to date.


Asunto(s)
COVID-19 , Grafito , Ácidos Nucleicos , Sistemas CRISPR-Cas , Humanos , Virus Sincitiales Respiratorios , SARS-CoV-2/genética
7.
Mikrochim Acta ; 187(7): 390, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32548791

RESUMEN

A nanocomposite based on nanofibrillar cellulose (NFC) coated with gold-silver (core-shell) nanoparticles (Au@Ag NPs) was developed as a novel surface-enhanced Raman spectroscopy (SERS) substrate. SERS performance of NFC/Au@Ag NP nanocomposite was tested by 4-mercaptobenzoic acid. The cellulose nanofibril network was a suitable platform that allowed Au@Ag NPs to be evenly distributed and stabilized over the substrate, providing more SERS hotspots for the measurement. Two pesticides, thiram and paraquat, were successfully detected either individually or as a mixture in lettuce by SERS coupled with the nanocomposite. Strong Raman scattering signals for both thiram and paraquat were obtained within a Raman shift range of 400-2000 cm-1 and a Raman intensity ~ 8 times higher than those acquired by NFC/Au NP nanocomposite. Characteristic peaks were clearly observable in all SERS spectra even at a low concentration of 10 µg/L of pesticides. Limit of detection values of 71 and 46 µg/L were obtained for thiram and paraquat, respectively. Satisfactory SERS performance, reproducibility, and sensitivity of NFC/Au@Ag NP nanocomposite validate its applicability for real-world analysis to monitor pesticides and other contaminants in complex food matrices within a short acquisition time. Graphical abstract.


Asunto(s)
Celulosa/química , Lactuca/química , Nanopartículas del Metal/química , Nanocompuestos/química , Paraquat/análisis , Tiram/análisis , Oro/química , Límite de Detección , Plaguicidas/análisis , Reproducibilidad de los Resultados , Plata/química , Espectrometría Raman
8.
Lab Chip ; 23(17): 3862-3873, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37539483

RESUMEN

Rapid and ultrasensitive point-of-care RNA detection plays a critical role in the diagnosis and management of various infectious diseases. The gold-standard detection method of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is ultrasensitive and accurate yet limited by the lengthy turnaround time (1-2 days). On the other hand, an antigen test offers rapid at-home detection (typically ~15 min) but suffers from low sensitivity and high false-negative rates. An ideal point-of-care diagnostic device would combine the merits of PCR-level sensitivity and rapid sample-to-result workflow comparable to antigen testing. However, the existing detection platforms typically possess superior sensitivity or rapid sample-to-result time, but not both. This paper reports a point-of-care microfluidic device that offers ultrasensitive yet rapid detection of viral RNA from clinical samples. The device consists of a microfluidic chip for precisely manipulating small volumes of samples, a miniaturized heater for viral lysis and ribonuclease inactivation, a Cas13a-electrochemical sensor for target preamplification-free and ultrasensitive RNA detection, and a smartphone-compatible potentiostat for data acquisition. As demonstrations, the devices achieve the detection of heat-inactivated SARS-CoV-2 samples with a limit of detection down to 10 aM within 25 minutes, which is comparable to the sensitivity of RT-PCR and rapidness of an antigen test. The platform also successfully distinguishes all nine positive unprocessed clinical SARS-CoV-2 nasopharyngeal swab samples from four negative samples within 25 minutes of sample-to-result time. Together, this device provides a point-of-care solution that can be deployed in diverse settings beyond laboratory environments for rapid and accurate detection of RNA from clinical samples. The device can potentially be expandable to detect other viral targets, such as human immunodeficiency virus self-testing and Zika virus, where rapid and ultrasensitive point-of-care detection is required.


Asunto(s)
COVID-19 , Infección por el Virus Zika , Virus Zika , Humanos , Sistemas de Atención de Punto , SARS-CoV-2/genética , COVID-19/diagnóstico , Microfluídica , ARN Viral/genética , ARN Viral/análisis , Virus Zika/genética , Sensibilidad y Especificidad
9.
ACS Sens ; 8(4): 1489-1499, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37027291

RESUMEN

Quantitative polymerase chain reaction as a powerful tool for DNA detection has been pivotal to a vast range of applications, including disease screening, food safety assessment, environmental monitoring, and many others. However, the essential target amplification step in combination with fluorescence readout poses a significant challenge to rapid and streamlined analysis. The discovery and engineering of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) technology have recently paved the way for a novel approach to nucleic acid detection, but the majority of current CRISPR-mediated DNA detection platforms are limited by insufficient sensitivity and still require target preamplification. Herein, we report a CRISPR-Cas12a-mediated graphene field-effect transistor (gFET) array, named CRISPR Cas12a-gFET, for amplification-free, ultrasensitive, and reliable detection of both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) targets. CRISPR Cas12a-gFET leverages the multiturnover trans-cleavage activity of CRISPR Cas12a for intrinsic signal amplification and ultrasensitivity of gFET. As demonstrated, CRISPR Cas12a-gFET achieves a limit of detection of 1 aM for the ssDNA human papillomavirus 16 synthetic target and 10 aM for the dsDNA Escherichia coli plasmid target without target preamplification. In addition, an array of 48 sensors on a single 1.5 cm × 1.5 cm chip is employed to improve data reliability. Finally, Cas12a-gFET demonstrates the capability to discriminate single-nucleotide polymorphisms. Together, the CRISPR Cas12a-gFET biosensor array provides a detection tool for amplification-free, ultrasensitive, reliable, and highly specific DNA detections.


Asunto(s)
Sistemas CRISPR-Cas , Grafito , Humanos , Sistemas CRISPR-Cas/genética , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , ADN/genética , ADN de Cadena Simple/genética , Escherichia coli/genética , Nucleótidos
10.
bioRxiv ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37905115

RESUMEN

Long-term, real-time molecular monitoring in complex biological environments is critical for our ability to understand, prevent, diagnose, and manage human diseases. Aptamer-based electrochemical biosensors possess the promise due to their generalizability and a high degree of selectivity. Nevertheless, the operation of existing aptamer-based biosensors in vivo is limited to a few hours. Here, we report a first-generation long-term in vivo molecular monitoring platform, named aptamer-graphene microtransistors (AGMs). The AGM incorporates a layer of pyrene-(polyethylene glycol)5-alcohol and DNase inhibitor-doped polyacrylamide hydrogel coating to reduce biofouling and aptamer degradation. As a demonstration of function and generalizability, the AGM achieves the detection of biomolecules such as dopamine and serotonin in undiluted whole blood at 37 °C for 11 days. Furthermore, the AGM successfully captures optically evoked dopamine release in vivo in mice for over one week and demonstrates the capability to monitor behaviorally-induced endogenous dopamine release even after eight days of implantation in freely moving mice. The results reported in this work establish the potential for chronic aptamer-based molecular monitoring platforms, and thus serve as a new benchmark for molecular monitoring using aptamer-based technology.

11.
Sci Adv ; 8(8): eabn2277, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35196090

RESUMEN

Extensive studies in both animals and humans have demonstrated that high molecular weight neurochemicals, such as neuropeptides and other polypeptide neurochemicals, play critical roles in various neurological disorders. Despite many attempts, existing methods are constrained by detecting neuropeptide release in small animal models during behavior tasks, which leaves the molecular mechanisms underlying many neurological and psychological disorders unresolved. Here, we report a wireless, programmable push-pull microsystem for membrane-free neurochemical sampling with cellular spatial resolution in freely moving animals. In vitro studies demonstrate the sampling of various neurochemicals with high recovery (>80%). Open-field tests reveal that the device implantation does not affect the natural behavior of mice. The probe successfully captures the pharmacologically evoked release of neuropeptide Y in freely moving mice. This wireless push-pull microsystem creates opportunities for neuroscientists to understand where, when, and how the release of neuropeptides modulates diverse behavioral outputs of the brain.

12.
ACS Sens ; 6(6): 2181-2190, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34038108

RESUMEN

Electrolytes play a pivotal role in regulating cardiovascular functions, hydration, and muscle activation. The current standards for monitoring electrolytes involve periodic sampling of blood and measurements using laboratory techniques, which are often uncomfortable/inconvenient to the subjects and add considerable expense to the management of their underlying disease conditions. The wide range of electrolytes in skin interstitial fluids (ISFs) and their correlations with those in plasma create exciting opportunities for applications such as electrolyte and circadian metabolism monitoring. However, it has been challenging to monitor these electrolytes in the skin ISFs. In this study, we report a minimally invasive microneedle-based potentiometric sensing system for multiplexed and continuous monitoring of Na+ and K+ in the skin ISFs. The potentiometric sensing system consists of a miniaturized stainless-steel hollow microneedle to prevent sensor delamination and a set of modified microneedle electrodes for multiplex monitoring. We demonstrate the measurement of Na+ and K+ in artificial ISFs with a fast response time, excellent reversibility and repeatability, adequate selectivity, and negligible potential interferences upon the addition of a physiologically relevant concentration of metabolites, dietary biomarkers, and nutrients. In addition, the sensor maintains the sensitivity after multiple insertions into the chicken skin model. Furthermore, the measurements in artificial ISFs using calibrated sensors confirm the accurate measurements of physiological electrolytes in artificial ISFs. Finally, the skin-mimicking phantom gel and chicken skin model experiments demonstrate the sensor's potential for minimally invasive monitoring of electrolytes in skin ISFs. The developed sensor platform can be adapted for a wide range of other applications, including real-time monitoring of nutrients, metabolites, and proteins.


Asunto(s)
Técnicas Biosensibles , Líquido Extracelular , Electrólitos , Agujas , Potenciometría
13.
ACS Appl Mater Interfaces ; 13(28): 33464-33476, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34241991

RESUMEN

Encapsulation materials play an important role in many applications including wearable electronics, medical devices, underwater robotics, marine skin tagging system, food packaging, and energy conversation and storage devices. To date, all the encapsulation materials, including polymer layers and inorganic materials, are solid materials. These solid materials suffer from limited barrier lifetimes due to pinholes, cracks, and nanopores or from complicated fabrication processes and limited stretchability for interfacing with complex 3D surfaces. This paper reports a solution to this material challenge by demonstrating bioinspired oil-infused slippery surfaces with excellent waterproof property for the first time. A water vapor transmission test shows that locking a thin layer of oil on the silicone elastomer improves the water vapor barrier performance by three orders of magnitude. Accelerated lifetime tests suggest robust water barrier characteristics that approach 226 days at 37 °C even under severe mechanical damage. A combination of temperature- and thickness-dependent experimental measurements and reaction-diffusion modeling reveals the key waterproof property. In addition to serving as a barrier to water, the oil-infused surface demonstrates an attractive ion barrier property. All these exceptional properties suggest the potential applications of slippery surfaces as encapsulation materials for medical devices, underwater electronics, and many others.


Asunto(s)
Fluorocarburos/química , Aceites/química , Elastómeros de Silicona/química , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales , Permeabilidad , Aceites de Silicona/química , Vapor , Propiedades de Superficie , Agua/química
14.
Lab Chip ; 19(9): 1545-1555, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30912557

RESUMEN

The rich range of biomarkers in sweat and the ability to collect sweat in a non-invasive manner create interest in the use of this biofluid for assessments of health and physiological status, with potential applications that range from sports and fitness to clinical medicine. This paper introduces two important advances in recently reported classes of soft, skin-interfaced microfluidic systems for sweat capture and analysis: (1) a simple, broadly applicable means for collection of sweat that bypasses requirements for physical/mental exertion or pharmacological stimulation and (2) a set of enzymatic chemistries and colorimetric readout approaches for determining the concentrations of creatinine and urea in sweat, throughout ranges that are physiologically relevant. The results allow for routine, non-pharmacological capture of sweat for patient populations, such as infants and the elderly, that cannot be expected to sweat through exercise, and they create potential opportunities in the use of sweat for kidney disease screening/monitoring. Studies on human subjects demonstrate these essential capabilities, with quantitative comparisons to standard methods. The results expand the range of options available in microfluidic sampling and sensing of sweat for disease diagnostics and health monitoring.


Asunto(s)
Colorimetría/instrumentación , Enfermedades Renales/metabolismo , Dispositivos Laboratorio en un Chip , Sudor/metabolismo , Biomarcadores/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA