Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 39(16): 5861-5871, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37058525

RESUMEN

Smart interfaces that are responsive to external triggers such as light are of great interest for the development of responsive or adaptive materials and interfaces. Using alkyl-arylazopyrazole butyl sulfonate surfactants (alkyl-AAP) that can undergo E/Z photoisomerization when irradiated with green (E) and UV (Z) lights, we demonstrate through a combination of experiments and computer simulations that there can be surprisingly large changes in surface tension and in the molecular structure and order at air-water interfaces. Surface tensiometry, vibrational sum-frequency generation (SFG) spectroscopy, and neutron reflectometry (NR) are applied to the study of custom-synthesized AAP surfactants with octyl- and H-terminal groups at air-water interfaces as a function of their bulk concentration and E/Z configuration. Upon photoswitching, a drastic influence of the alkyl chain on both the surface activity and the responsiveness of interfacial surfactants is revealed from changes in the surface tension, γ, where the largest changes in γ are observed for octyl-AAP (Δγ ∼ 23 mN/m) in contrast to H-AAP with Δγ < 10 mN/m. Results from vibrational SFG spectroscopy and NR show that the interfacial composition and the molecular order of the surfactants drastically change with E/Z photoisomerization and surface coverage. Indeed, from analysis of the S-O (head group) and C-H vibrational bands (hydrophobic tail), a qualitative analysis of orientational and structural changes of interfacial AAP surfactants is provided. The experiments are complemented by resolution of thermodynamic parameters such as equilibrium constants from ultra-coarse-grained simulations, which also capture details like island formation and interaction parameters of interfacial molecules. Here, the interparticle interaction ("stickiness") and the interaction with the surface are adjusted, closely reflecting experimental conditions.

2.
Phys Rev Lett ; 117(23): 236801, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27982661

RESUMEN

We investigate the possibility of spin-preserving symmetries due to the interplay of Rashba and Dresselhaus spin-orbit coupling in n-doped zinc-blende semiconductor quantum wells of general crystal orientation. It is shown that a conserved spin operator can be realized if and only if at least two growth direction Miller indices agree in modulus. The according spin-orbit field has in general both in-plane and out-of-plane components and is always perpendicular to the shift vector of the corresponding persistent spin helix. We also analyze higher-order effects arising from the Dresselhaus term, and the impact of our results on weak (anti)localization corrections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA