Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mol Cell ; 81(1): 183-197.e6, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33278361

RESUMEN

Mre11-Rad50-Xrs2 (MRX) is a highly conserved complex with key roles in various aspects of DNA repair. Here, we report a new function for MRX in limiting transcription in budding yeast. We show that MRX interacts physically and colocalizes on chromatin with the transcriptional co-regulator Mediator. MRX restricts transcription of coding and noncoding DNA by a mechanism that does not require the nuclease activity of Mre11. MRX is required to tether transcriptionally active loci to the nuclear pore complex (NPC), and it also promotes large-scale gene-NPC interactions. Moreover, MRX-mediated chromatin anchoring to the NPC contributes to chromosome folding and helps to control gene expression. Together, these findings indicate that MRX has a role in transcription and chromosome organization that is distinct from its known function in DNA repair.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromosomas Fúngicos/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Genes Dev ; 30(18): 2119-2132, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27688401

RESUMEN

Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches. We revealed an essential function of the Mediator middle module exerted through its Med10 subunit, implicating a key interaction between Mediator and TFIIB. We showed that this Mediator-TFIIB link has a global role on PIC assembly genome-wide. Moreover, the amplitude of Mediator's effect on PIC formation is gene-dependent and is related to the promoter architecture in terms of TATA elements, nucleosome occupancy, and dynamics. This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts.


Asunto(s)
Complejo Mediador/metabolismo , Regiones Promotoras Genéticas/fisiología , Saccharomyces cerevisiae/fisiología , Factor de Transcripción TFIIB/metabolismo , Cromatina/metabolismo , Complejo Mediador/genética , Mutación , Unión Proteica/genética , Multimerización de Proteína/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nature ; 530(7588): 113-6, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26814966

RESUMEN

ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers target specific nucleosomes to regulate transcription is unclear. Here we present genome-wide remodeller-nucleosome interaction profiles for the chromatin remodellers Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank micrococcal nuclease (MNase)-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites are nevertheless bound by non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and marked by H3K4me3 and H3K27ac modifications. RNA polymerase II therefore navigates hundreds of base pairs of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3' end of the NFR. Transcriptome analysis after remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers have either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Genoma/genética , Células Madre Embrionarias de Ratones/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Animales , ADN Helicasas/metabolismo , Histonas/metabolismo , Ratones , Nucleasa Microcócica/metabolismo , Células Madre Embrionarias de Ratones/citología , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , Especificidad por Sustrato , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción
4.
Genes Dev ; 27(23): 2549-62, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24298055

RESUMEN

Mediator is a large multiprotein complex conserved in all eukaryotes. The crucial function of Mediator in transcription is now largely established. However, we found that this complex also plays an important role by connecting transcription with DNA repair. We identified a functional contact between the Med17 Mediator subunit and Rad2/XPG, the 3' endonuclease involved in nucleotide excision DNA repair. Genome-wide location analyses revealed that Rad2 is associated with RNA polymerase II (Pol II)- and Pol III-transcribed genes and telomeric regions in the absence of exogenous genotoxic stress. Rad2 occupancy of Pol II-transcribed genes is transcription-dependent. Genome-wide Rad2 occupancy of class II gene promoters is well correlated with that of Mediator. Furthermore, UV sensitivity of med17 mutants is correlated with reduced Rad2 occupancy of class II genes and concomitant decrease of Mediator interaction with Rad2 protein. Our results suggest that Mediator is involved in DNA repair by facilitating Rad2 recruitment to transcribed genes.


Asunto(s)
Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Complejo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Endonucleasas/genética , Eliminación de Gen , Genoma , Humanos , Complejo Mediador/genética , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Tolerancia a Radiación/genética , Saccharomyces cerevisiae/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Rayos Ultravioleta
5.
Genomics ; 110(2): 98-111, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28911974

RESUMEN

The GLIS family zinc finger 3 isoform (GLIS3) is a risk gene for Type 1 and Type 2 diabetes, glaucoma and Alzheimer's disease endophenotype. We identified GLIS3 binding sites in insulin secreting cells (INS1) (FDR q<0.05; enrichment range 1.40-9.11 fold) sharing the motif wrGTTCCCArTAGs, which were enriched in genes involved in neuronal function and autophagy and in risk genes for metabolic and neuro-behavioural diseases. We confirmed experimentally Glis3-mediated regulation of the expression of genes involved in autophagy and neuron function in INS1 and neuronal PC12 cells. Naturally-occurring coding polymorphisms in Glis3 in the Goto-Kakizaki rat model of type 2 diabetes were associated with increased insulin production in vitro and in vivo, suggestive alteration of autophagy in PC12 and INS1 and abnormal neurogenesis in hippocampus neurons. Our results support biological pleiotropy of GLIS3 in pathologies affecting ß-cells and neurons and underline the existence of trans­nosology pathways in diabetes and its co-morbidities.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Autofagia , Sitios de Unión , Línea Celular Tumoral , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Hipocampo/citología , Masculino , Neurogénesis , Neuronas/citología , Células PC12 , Polimorfismo Genético , Unión Proteica , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/química , Factores de Transcripción/genética
6.
Genome Res ; 24(6): 942-53, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24793478

RESUMEN

Histone modifications are epigenetic marks that play fundamental roles in many biological processes including the control of chromatin-mediated regulation of gene expression. Little is known about interindividual variability of histone modification levels across the genome and to what extent they are influenced by genetic variation. We annotated the rat genome with histone modification maps, identified differences in histone trimethyl-lysine levels among strains, and described their underlying genetic basis at the genome-wide scale using ChIP-seq in heart and liver tissues in a panel of rat recombinant inbred and their progenitor strains. We identified extensive variation of histone methylation levels among individuals and mapped hundreds of underlying cis- and trans-acting loci throughout the genome that regulate histone methylation levels in an allele-specific manner. Interestingly, most histone methylation level variation was trans-linked and the most prominent QTL identified influenced H3K4me3 levels at 899 putative promoters throughout the genome in the heart. Cis- acting variation was enriched in binding sites of distinct transcription factors in heart and liver. The integrated analysis of DNA variation together with histone methylation and gene expression levels showed that histoneQTLs are an important predictor of gene expression and that a joint analysis significantly enhanced the prediction of gene expression traits (eQTLs). Our data suggest that genetic variation has a widespread impact on histone trimethylation marks that may help to uncover novel genotype-phenotype relationships.


Asunto(s)
Epigénesis Genética , Variación Genética , Genoma , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Histonas/genética , Hígado/metabolismo , Masculino , Metilación , Miocardio/metabolismo , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Ratas , Ratas Endogámicas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
7.
Nucleic Acids Res ; 43(19): 9214-31, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26240385

RESUMEN

Mediator is a large multiprotein complex conserved in all eukaryotes, which has a crucial coregulator function in transcription by RNA polymerase II (Pol II). However, the molecular mechanisms of its action in vivo remain to be understood. Med17 is an essential and central component of the Mediator head module. In this work, we utilised our large collection of conditional temperature-sensitive med17 mutants to investigate Mediator's role in coordinating preinitiation complex (PIC) formation in vivo at the genome level after a transfer to a non-permissive temperature for 45 minutes. The effect of a yeast mutation proposed to be equivalent to the human Med17-L371P responsible for infantile cerebral atrophy was also analyzed. The ChIP-seq results demonstrate that med17 mutations differentially affected the global presence of several PIC components including Mediator, TBP, TFIIH modules and Pol II. Our data show that Mediator stabilizes TFIIK kinase and TFIIH core modules independently, suggesting that the recruitment or the stability of TFIIH modules is regulated independently on yeast genome. We demonstrate that Mediator selectively contributes to TBP recruitment or stabilization to chromatin. This study provides an extensive genome-wide view of Mediator's role in PIC formation, suggesting that Mediator coordinates multiple steps of a PIC assembly pathway.


Asunto(s)
Complejo Mediador/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Iniciación de la Transcripción Genética , Cromatina/metabolismo , Galactoquinasa/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Complejo Mediador/genética , Mutación , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIIH/metabolismo
8.
Mol Cell ; 31(3): 337-46, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18691966

RESUMEN

In vitro, without Mediator, the association of general transcription factors (GTF) and RNA polymerase II (Pol II) in preinitiation complexes (PIC) occurs in an orderly fashion. In this work, we explore the in vivo function of Mediator in GTF recruitment to PIC. A direct interaction between Med11 Mediator head subunit and Rad3 TFIIH subunit was identified. We explored the significance of this interaction and those of Med11 with head module subunits Med17 and Med22 and found that impairing these interactions could differentially affect the recruitment of TFIIH, TFIIE, and Pol II in the PIC. A med11 mutation that altered promoter occupancy by the TFIIK kinase module of TFIIH genome-wide also reduced Pol II CTD serine 5 phosphorylation. We conclude that the Mediator head module plays a critical role in TFIIH and TFIIE recruitment to the PIC. We identify steps in PIC formation that suggest a branched assembly pathway.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factor de Transcripción TFIIH/metabolismo , Transcripción Genética , Centrómero/metabolismo , Inmunoprecipitación de Cromatina , ADN Helicasas/metabolismo , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/genética , Complejo Mediador , Modelos Biológicos , Mutación/genética , Fosforilación , Fosfotransferasas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción TFII/metabolismo
9.
Nucleic Acids Res ; 40(1): 270-83, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21911356

RESUMEN

RNA polymerase (Pol) III synthesizes the tRNAs, the 5S ribosomal RNA and a small number of untranslated RNAs. In vitro, it also transcribes short interspersed nuclear elements (SINEs). We investigated the distribution of Pol III and its associated transcription factors on the genome of mouse embryonic stem cells using a highly specific tandem ChIP-Seq method. Only a subset of the annotated class III genes was bound and thus transcribed. A few hundred SINEs were associated with the Pol III transcription machinery. We observed that Pol III and its transcription factors were present at 30 unannotated sites on the mouse genome, only one of which was conserved in human. An RNA was associated with >80% of these regions. More than 2200 regions bound by TFIIIC transcription factor were devoid of Pol III. These sites were associated with cohesins and often located close to CTCF-binding sites, suggesting that TFIIIC might cooperate with these factors to organize the chromatin. We also investigated the genome-wide distribution of the ubiquitous TFIIS variant, TCEA1. We found that, as in Saccharomyces cerevisiae, TFIIS is associated with class III genes and also with SINEs suggesting that TFIIS is a Pol III transcription factor in mammals.


Asunto(s)
Células Madre Embrionarias/metabolismo , ARN Polimerasa III/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Animales , Sitios de Unión , Factor 1 de Respuesta al Butirato , Línea Celular , Cromatina/metabolismo , Inmunoprecipitación de Cromatina/métodos , Genoma , Ratones , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , ARN Nuclear Pequeño/genética , ARN de Transferencia/genética , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ADN , Elementos de Nucleótido Esparcido Corto , Factor de Transcripción TFIIIB/metabolismo , Factores de Transcripción TFIII/metabolismo
10.
Cell Rep ; 42(5): 112465, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37133993

RESUMEN

Chromatin organization is crucial for transcriptional regulation in eukaryotes. Mediator is an essential and conserved co-activator thought to act in concert with chromatin regulators. However, it remains largely unknown how their functions are coordinated. Here, we provide evidence in the yeast Saccharomyces cerevisiae that Mediator establishes physical contact with RSC (Remodels the Structure of Chromatin), a conserved and essential chromatin remodeling complex that is crucial for nucleosome-depleted region (NDR) formation. We determine the role of Mediator-RSC interaction in their chromatin binding, nucleosome occupancy, and transcription on a genomic scale. Mediator and RSC co-localize on wide NDRs of promoter regions, and specific Mediator mutations affect nucleosome eviction and TSS-associated +1 nucleosome stability. This work shows that Mediator contributes to RSC remodeling function to shape NDRs and maintain chromatin organization on promoter regions. It will help in our understanding of transcriptional regulation in the chromatin context relevant for severe diseases.


Asunto(s)
Nucleosomas , Proteínas de Saccharomyces cerevisiae , Nucleosomas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regiones Promotoras Genéticas/genética
11.
Nature ; 432(7020): 1058-61, 2004 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-15616569

RESUMEN

Regulation of ribosome biogenesis is central to the control of cell growth. In rapidly growing yeast cells, ribosomal protein (RP) genes account for approximately one-half of all polymerase II transcription-initiation events, yet these genes are markedly and coordinately downregulated in response to a number of environmental stress conditions, or during the transition from fermentation to respiration. Although several conserved signalling pathways (TOR, RAS/protein kinase A and protein kinase C) impinge upon RP gene transcription, little is known about how initiation at these genes is controlled. Rap1 (refs 6, 7) and more recently Fhl1 (ref. 8) were shown to bind upstream of many RP genes. Here we show that the essential protein Ifh1 binds to and activates many RP gene promoters under optimal growth conditions in Saccharomyces cerevisiae. Ifh1 is recruited to RP gene promoters through the forkhead-associated domain of Fhl1. Ifh1 binding decreases when RP genes are downregulated either by TOR inhibition or nutrient depletion, and is restored after release from starvation or upon regulated induction of IFH1 expression. These findings indicate a central role for Ifh1 and Fhl1 in RP gene regulation.


Asunto(s)
Genes Esenciales/fisiología , Genes Fúngicos/genética , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Transactivadores/metabolismo , Factores de Transcripción Forkhead , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Elementos de Respuesta/genética , Complejo Shelterina , Sirolimus/farmacología , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos
12.
Mol Cell Biol ; 26(13): 4920-33, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16782880

RESUMEN

RSC is an essential, multisubunit chromatin remodeling complex. We show here that the Rsc4 subunit of RSC interacted via its C terminus with Rpb5, a conserved subunit shared by all three nuclear RNA polymerases (Pol). Furthermore, the RSC complex coimmunoprecipitated with all three RNA polymerases. Mutations in the C terminus of Rsc4 conferred a thermosensitive phenotype and the loss of interaction with Rpb5. Certain thermosensitive rpb5 mutations were lethal in combination with an rsc4 mutation, supporting the physiological significance of the interaction. Pol II transcription of ca. 12% of the yeast genome was increased or decreased twofold or more in a rsc4 C-terminal mutant. The transcription of the Pol III-transcribed genes SNR6 and RPR1 was also reduced, in agreement with the observed localization of RSC near many class III genes. Rsc4 C-terminal mutations did not alter the stability or assembly of the RSC complex, suggesting an impact on Rsc4 function. Strikingly, a C-terminal mutation of Rsc4 did not impair RSC recruitment to the RSC-responsive genes DUT1 and SMX3 but rather changed the chromatin accessibility of DNases to their promoter regions, suggesting that the altered transcription of DUT1 and SMX3 was the consequence of altered chromatin remodeling.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Fúngicas/metabolismo , Levaduras/metabolismo , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Mutación , Subunidades de Proteína/metabolismo , Transcripción Genética , Levaduras/enzimología , Levaduras/genética
13.
Mol Cell Biol ; 25(1): 488-98, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15601868

RESUMEN

The Ccr4-Not complex is a conserved global regulator of gene expression, which serves as a regulatory platform that senses and/or transmits nutrient and stress signals to various downstream effectors. Presumed effectors of this complex in yeast are TFIID, a general transcription factor that associates with the core promoter, and Msn2, a key transcription factor that regulates expression of stress-responsive element (STRE)-controlled genes. Here we show that the constitutively high level of STRE-driven expression in ccr4-not mutants results from two independent effects. Accordingly, loss of Ccr4-Not function causes a dramatic Msn2-independent redistribution of TFIID on promoters with a particular bias for STRE-controlled over ribosomal protein gene promoters. In parallel, loss of Ccr4-Not complex function results in an alteration of the posttranslational modification status of Msn2, which depends on the type 1 protein phosphatase Glc7 and its newly identified subunit Bud14. Tests of epistasis as well as transcriptional analyses of Bud14-dependent transcription support a model in which the Ccr4-Not complex prevents activation of Msn2 via inhibition of the Bud14/Glc7 module in exponentially growing cells. Thus, increased activity of STRE genes in ccr4-not mutants may result from both altered general distribution of TFIID and unscheduled activation of Msn2.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas de Unión al ADN/fisiología , Ribonucleasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Factores de Transcripción/fisiología , Activación Transcripcional , Reactivos de Enlaces Cruzados/farmacología , ADN/metabolismo , Regulación de la Expresión Génica , Genotipo , Glucosa/metabolismo , Immunoblotting , Inmunoprecipitación , Modelos Biológicos , Mutación , Hibridación de Ácido Nucleico , Fosfoproteínas Fosfatasas/metabolismo , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteína Fosfatasa 1 , Procesamiento Proteico-Postraduccional , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Factor de Transcripción TFIID/química , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
14.
Mol Cell Biol ; 23(1): 195-205, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12482973

RESUMEN

The essential C17 subunit of yeast RNA polymerase (Pol) III interacts with Brf1, a component of TFIIIB, suggesting a role for C17 in the initiation step of transcription. The protein sequence of C17 (encoded by RPC17) is conserved from yeasts to humans. However, mammalian homologues of C17 (named CGRP-RCP) are known to be involved in a signal transduction pathway related to G protein-coupled receptors, not in transcription. In the present work, we first establish that human CGRP-RCP is the genuine orthologue of C17. CGRP-RCP was found to functionally replace C17 in Deltarpc17 yeast cells; the purified mutant Pol III contained CGRP-RCP and had a decreased specific activity but initiated faithfully. Furthermore, CGRP-RCP was identified by mass spectrometry in a highly purified human Pol III preparation. These results suggest that CGRP-RCP has a dual function in mammals. Next, we demonstrate by genetic and biochemical approaches that C17 forms with C25 (encoded by RPC25) a heterodimer akin to Rpb4/Rpb7 in Pol II. C17 and C25 were found to interact genetically in suppression screens and physically in coimmunopurification and two-hybrid experiments. Sequence analysis and molecular modeling indicated that the C17/C25 heterodimer likely adopts a structure similar to that of the archaeal RpoE/RpoF counterpart of the Rpb4/Rpb7 complex. These RNA polymerase subunits appear to have evolved to meet the distinct requirements of the multiple forms of RNA polymerases.


Asunto(s)
Proteínas Fúngicas/metabolismo , ARN Polimerasa III/metabolismo , ARN Polimerasa II/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dimerización , Proteínas Fúngicas/genética , Humanos , Sustancias Macromoleculares , Mamíferos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación Proteica , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Polimerasa III/genética , Receptores de Péptido Relacionado con el Gen de Calcitonina/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Factor sigma/química , Factor sigma/genética , Factor sigma/metabolismo , Supresión Genética , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Levaduras/genética , Levaduras/metabolismo
15.
Transcription ; 8(5): 328-342, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28841352

RESUMEN

Mediator is a multisubunit complex conserved in eukaryotes that plays an essential coregulator role in RNA polymerase (Pol) II transcription. Despite intensive studies of the Mediator complex, the molecular mechanisms of its function in vivo remain to be fully defined. In this review, we will discuss the different aspects of Mediator function starting with its interactions with specific transcription factors, its recruitment to chromatin and how, as a coregulator, it contributes to the assembly of transcription machinery components within the preinitiation complex (PIC) in vivo and beyond the PIC formation.


Asunto(s)
Complejo Mediador/metabolismo , Iniciación de la Transcripción Genética , Animales , Cromatina/genética , Cromatina/metabolismo , Humanos , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo
16.
Nucleic Acids Res ; 32(18): 5379-91, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15477388

RESUMEN

Mediator is a large, modular protein complex remotely conserved from yeast to man that conveys regulatory signals from DNA-binding transcription factors to RNA polymerase II. In Saccharomyces cerevisiae, Mediator is thought to be composed of 24 subunits organized in four sub-complexes, termed the head, middle, tail and Cdk8 (Srb8-11) modules. In this work, we have used screening and pair-wise two-hybrid approaches to investigate protein-protein contacts between budding yeast Mediator subunits. The derived interaction map includes the delineation of numerous interaction domains between Mediator subunits, frequently corresponding to segments that have been conserved in evolution, as well as novel connections between the Cdk8 (Srb8-11) and head modules, the head and middle modules, and the middle and tail modules. The two-hybrid analysis, together with co-immunoprecipitation studies and gel filtration experiments revealed that Med31 (Soh1) is associated with the yeast Mediator that therefore comprises 25 subunits. Finally, analysis of the protein interaction network within the Drosophila Mediator middle module indicated that the structural organization of the Mediator complex is conserved from yeast to metazoans. The resulting interaction map provides a framework for delineating Mediator structure-function and investigating how Mediator function is regulated.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Biblioteca Genómica , Sustancias Macromoleculares , Complejo Mediador , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis , Técnicas del Sistema de Dos Híbridos
17.
Science ; 348(6234): 585-8, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25931562

RESUMEN

Mobile genetic elements are ubiquitous. Their integration site influences genome stability and gene expression. The Ty1 retrotransposon of the yeast Saccharomyces cerevisiae integrates upstream of RNA polymerase III (Pol III)-transcribed genes, yet the primary determinant of target specificity has remained elusive. Here we describe an interaction between Ty1 integrase and the AC40 subunit of Pol III and demonstrate that AC40 is the predominant determinant targeting Ty1 integration upstream of Pol III-transcribed genes. Lack of an integrase-AC40 interaction dramatically alters target site choice, leading to a redistribution of Ty1 insertions in the genome, mainly to chromosome ends. The mechanism of target specificity allows Ty1 to proliferate and yet minimizes genetic damage to its host.


Asunto(s)
ARN Polimerasa III/metabolismo , Retroelementos/genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Cromosomas Fúngicos/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Integrasas/metabolismo , ARN de Transferencia/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
18.
PLoS One ; 9(7): e102464, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25029256

RESUMEN

The BYpass of Ess1 (Bye1) protein is a putative S. cerevisiae transcription factor homologous to the human cancer-associated PHF3/DIDO family of proteins. Bye1 contains a Plant Homeodomain (PHD) and a TFIIS-like domain. The Bye1 PHD finger interacts with tri-methylated lysine 4 of histone H3 (H3K4me3) while the TFIIS-like domain binds to RNA polymerase (Pol) II. Here, we investigated the contribution of these structural features to Bye1 recruitment to chromatin as well as its function in transcriptional regulation. Genome-wide analysis of Bye1 distribution revealed at least two distinct modes of association with actively transcribed genes: within the core of Pol II- and Pol III-transcribed genes concomitant with the presence of the TFIIS transcription factor and, additionally, with promoters of a subset of Pol II-transcribed genes. Specific loss of H3K4me3 abolishes Bye1 association to gene promoters, but doesn't affect its binding within gene bodies. Genetic interactions suggested an essential role of Bye1 in cell fitness under stress conditions compensating the absence of TFIIS. Furthermore, BYE1 deletion resulted in the attenuation of GAL genes expression upon galactose-mediated induction indicating its positive role in transcription regulation. Together, these findings point to a bimodal role of Bye1 in regulation of Pol II transcription. It is recruited via its PHD domain to H3K4 tri-methylated promoters at early steps of transcription. Once Pol II is engaged into elongation, Bye1 binds directly to the transcriptional machinery, modulating its progression along the gene.


Asunto(s)
Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo , Inmunoprecipitación de Cromatina , Histonas/metabolismo , Oligonucleótidos/genética , Unión Proteica , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Técnicas del Sistema de Dos Híbridos
19.
Science ; 331(6023): 1451-4, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21415355

RESUMEN

Gene transcription is highly regulated. Altered transcription can lead to cancer or developmental diseases. Mediator, a multisubunit complex conserved among eukaryotes, is generally required for RNA polymerase II (Pol II) transcription. An interaction between the two complexes is known, but its molecular nature and physiological role are unclear. We identify a direct physical interaction between the Rpb3 Pol II subunit of Saccharomyces cerevisiae and the essential Mediator subunit, Med17. Furthermore, we demonstrate a functional element in the Mediator-Pol II interface that is important for genome-wide Pol II recruitment in vivo. Our findings suggest that a direct interaction between Mediator and Pol II is generally required for transcription of class II genes in eukaryotes.


Asunto(s)
Complejo Mediador/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética , Inmunoprecipitación de Cromatina , Galactoquinasa/genética , Genes Fúngicos , Genoma Fúngico , Complejo Mediador/genética , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
20.
Genetics ; 189(4): 1235-48, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21954159

RESUMEN

RNA polymerase (pol) II establishes many protein-protein interactions with transcriptional regulators to coordinate different steps of transcription. Although some of these interactions have been well described, little is known about the existence of RNA pol II regions involved in contact with transcriptional regulators. We hypothesize that conserved regions on the surface of RNA pol II contact transcriptional regulators. We identified such an RNA pol II conserved region that includes the majority of the "foot" domain and identified interactions of this region with Mvp1, a protein required for sorting proteins to the vacuole, and Spo14, a phospholipase D. Deletion of MVP1 and SPO14 affects the transcription of their target genes and increases phosphorylation of Ser5 in the carboxy-terminal domain (CTD). Genetic, phenotypic, and functional analyses point to a role for these proteins in transcriptional initiation and/or early elongation, consistent with their genetic interactions with CEG1, a guanylyltransferase subunit of the Saccharomyces cerevisiae capping enzyme.


Asunto(s)
Secuencia Conservada , ARN Polimerasa II/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Inmunoprecipitación de Cromatina , Datos de Secuencia Molecular , ARN Polimerasa II/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA