RESUMEN
This protocol describes an acute volume overload porcine model for adult Yorkshire pigs and piglets. Both swine ages undergo general anesthesia, endotracheal intubation, and mechanical ventilation. A central venous catheter and an arterial catheter are placed via surgical cutdown in the external jugular vein and carotid artery, respectively. A pulmonary artery catheter is placed through an introducer sheath of the central venous catheter. PlasmaLyte crystalloid solution is then administered at a rate of 100 mL/min in adult pigs and at 20 mL/kg boluses over 10 min in piglets. Hypervolemia is achieved either at 15% decrease in cardiac output or at 5 L in adult pigs and at 500 mL in piglets. Hemodynamic data, such as heart rate, respiratory rate, end-tidal carbon dioxide, fraction of oxygen-saturated hemoglobin, arterial blood pressure, central venous pressure, pulmonary artery pressure, pulmonary capillary wedge pressure, partial arterial oxygen pressure, lactate, pH, base excess, and pulmonary artery fraction of oxygen-saturated hemoglobin, are monitored during experimentation. Preliminary data observed with this model has demonstrated statistically significant changes and strong linear regressions between central hemodynamic parameters and acute volume overload in adult pigs. Only pulmonary capillary wedge pressure demonstrated both a linear regression and a statistical significance to acute volume overload in piglets. These models can aid scientists in the discovery of age-appropriate therapeutic and monitoring strategies to understand and prevent acute volume overload.
Asunto(s)
Hemodinámica , Respiración Artificial , Humanos , Adulto , Niño , Animales , Porcinos , Gasto Cardíaco/fisiología , Oxígeno , HemoglobinasRESUMEN
Introduction: A cornerstone of heart failure assessment is the right heart catheterization and the pulmonary capillary wedge pressure measurement it can provide. Clinical and hemodynamic parameters such as weight and jugular venous distention are less invasive measures often used to diagnose, manage, and treat these patients. To date, there is little data looking at the association of these key parameters to measured pulmonary capillary wedge pressure (PCWP). This is a large, retrospective, secondary analysis of a right heart catheterization database comparing clinical and hemodynamic parameters against measured PCWP in heart failure patients. Methods: A total of 538 subjects were included in this secondary analysis. Spearman's Rho analysis of each clinical and hemodynamic variable was used to compare their association to the documented PCWP. Variables analyzed included weight, body mass index (BMI), jugular venous distention (JVD), creatinine, edema grade, right atrial pressure (RAP), pulmonary artery systolic pressure (PASP), systemic vascular resistance, pulmonary vascular resistance, cardiac output (thermal and Fick), systolic blood pressure, diastolic blood pressure, heart rate, respiratory rate, oxygen saturation (SpO2), and pulmonary artery diastolic pressure (PADP). Results: Ten out of 17 selected parameters had a statistically significant association with measured PCWP values. PADP had the strongest association (0.73, p<0.0001), followed by RAP and PASP (0.69, p<0.0001 and 0.67, p<0.0001, respectively). Other significant parameters included weight (0.2, p<0.001), BMI (0.2, p<0.001), SpO2 (-0.17, p<0.0091), JVD (0.24, p<0.005) and edema grade (0.2, p<0.0001). Conclusion: This retrospective analysis clarifies the associations of commonly used clinical and hemodynamic parameters to the clinically used gold standard for volume assessment in heart failure patients, PCWP.