Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nat Immunol ; 19(1): 63-75, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29203862

RESUMEN

Innate immune cells adjust to microbial and inflammatory stimuli through a process termed environmental plasticity, which links a given individual stimulus to a unique activated state. Here, we report that activation of human plasmacytoid predendritic cells (pDCs) with a single microbial or cytokine stimulus triggers cell diversification into three stable subpopulations (P1-P3). P1-pDCs (PD-L1+CD80-) displayed a plasmacytoid morphology and specialization for type I interferon production. P3-pDCs (PD-L1-CD80+) adopted a dendritic morphology and adaptive immune functions. P2-pDCs (PD-L1+CD80+) displayed both innate and adaptive functions. Each subpopulation expressed a specific coding- and long-noncoding-RNA signature and was stable after secondary stimulation. P1-pDCs were detected in samples from patients with lupus or psoriasis. pDC diversification was independent of cell divisions or preexisting heterogeneity within steady-state pDCs but was controlled by a TNF autocrine and/or paracrine communication loop. Our findings reveal a novel mechanism for diversity and division of labor in innate immune cells.


Asunto(s)
Citocinas/inmunología , Células Dendríticas/inmunología , Expresión Génica/inmunología , Inmunidad Innata/inmunología , Inmunidad Adaptativa/inmunología , Antígeno B7-1/inmunología , Antígeno B7-1/metabolismo , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/ultraestructura , Perfilación de la Expresión Génica/métodos , Humanos , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Lupus Eritematoso Sistémico/inmunología , Microscopía Electrónica de Transmisión , Orthomyxoviridae/inmunología , Psoriasis/inmunología
2.
Mol Cell ; 82(2): 404-419.e9, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34798057

RESUMEN

The epitranscriptome has emerged as a new fundamental layer of control of gene expression. Nevertheless, the determination of the transcriptome-wide occupancy and function of RNA modifications remains challenging. Here we have developed Rho-seq, an integrated pipeline detecting a range of modifications through differential modification-dependent rhodamine labeling. Using Rho-seq, we confirm that the reduction of uridine to dihydrouridine (D) by the Dus reductase enzymes targets tRNAs in E. coli and fission yeast. We find that the D modification is also present on fission yeast mRNAs, particularly those encoding cytoskeleton-related proteins, which is supported by large-scale proteome analyses and ribosome profiling. We show that the α-tubulin encoding mRNA nda2 undergoes Dus3-dependent dihydrouridylation, which affects its translation. The absence of the modification on nda2 mRNA strongly impacts meiotic chromosome segregation, resulting in low gamete viability. Applying Rho-seq to human cells revealed that tubulin mRNA dihydrouridylation is evolutionarily conserved.


Asunto(s)
Segregación Cromosómica , Escherichia coli/genética , Meiosis , Procesamiento Postranscripcional del ARN , ARN Bacteriano/genética , ARN de Hongos/genética , ARN Mensajero/genética , Schizosaccharomyces/genética , Uridina/metabolismo , Cromosomas Bacterianos , Cromosomas Fúngicos , Cromosomas Humanos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Células HCT116 , Humanos , Oxidación-Reducción , ARN Bacteriano/metabolismo , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Análisis de Secuencia de ARN , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
3.
Mol Cell ; 81(1): 183-197.e6, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33278361

RESUMEN

Mre11-Rad50-Xrs2 (MRX) is a highly conserved complex with key roles in various aspects of DNA repair. Here, we report a new function for MRX in limiting transcription in budding yeast. We show that MRX interacts physically and colocalizes on chromatin with the transcriptional co-regulator Mediator. MRX restricts transcription of coding and noncoding DNA by a mechanism that does not require the nuclease activity of Mre11. MRX is required to tether transcriptionally active loci to the nuclear pore complex (NPC), and it also promotes large-scale gene-NPC interactions. Moreover, MRX-mediated chromatin anchoring to the NPC contributes to chromosome folding and helps to control gene expression. Together, these findings indicate that MRX has a role in transcription and chromosome organization that is distinct from its known function in DNA repair.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromosomas Fúngicos/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
RNA ; 30(6): 662-679, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38443115

RESUMEN

Despite being predicted to lack coding potential, cytoplasmic long noncoding (lnc)RNAs can associate with ribosomes. However, the landscape and biological relevance of lncRNA translation remain poorly studied. In yeast, cytoplasmic Xrn1-sensitive unstable transcripts (XUTs) are targeted by nonsense-mediated mRNA decay (NMD), suggesting a translation-dependent degradation process. Here, we report that XUTs are pervasively translated, which impacts their decay. We show that XUTs globally accumulate upon translation elongation inhibition, but not when initial ribosome loading is impaired. Ribo-seq confirmed ribosomes binding to XUTs and identified ribosome-associated 5'-proximal small ORFs. Mechanistically, the NMD-sensitivity of XUTs mainly depends on the 3'-untranslated region length. Finally, we show that the peptide resulting from the translation of an NMD-sensitive XUT reporter exists in NMD-competent cells. Our work highlights the role of translation in the posttranscriptional metabolism of XUTs. We propose that XUT-derived peptides could be exposed to natural selection, while NMD restricts XUT levels.


Asunto(s)
Exorribonucleasas , Degradación de ARNm Mediada por Codón sin Sentido , Biosíntesis de Proteínas , ARN Largo no Codificante , Ribosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ribosomas/metabolismo , Ribosomas/genética , Regiones no Traducidas 3' , Sistemas de Lectura Abierta , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estabilidad del ARN
5.
Mol Cell ; 61(3): 379-392, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26805575

RESUMEN

Antisense long non-coding (aslnc)RNAs represent a substantial part of eukaryotic transcriptomes that are, in yeast, controlled by the Xrn1 exonuclease. Nonsense-Mediated Decay (NMD) destabilizes the Xrn1-sensitive aslncRNAs (XUT), but what determines their sensitivity remains unclear. We report that 3' single-stranded (3'-ss) extension mediates XUTs degradation by NMD, assisted by the Mtr4 and Dbp2 helicases. Single-gene investigation, genome-wide RNA analyses, and double-stranded (ds)RNA mapping revealed that 3'-ss extensions discriminate the NMD-targeted XUTs from stable lncRNAs. Ribosome profiling showed that XUT are translated, locking them for NMD activity. Interestingly, mutants of the Mtr4 and Dbp2 helicases accumulated XUTs, suggesting that dsRNA unwinding is a critical step for degradation. Indeed, expression of anticomplementary transcripts protects cryptic intergenic lncRNAs from NMD. Our results indicate that aslncRNAs form dsRNA that are only translated and targeted to NMD if dissociated by Mtr4 and Dbp2. We propose that NMD buffers genome expression by discarding pervasive regulatory transcripts.


Asunto(s)
Degradación de ARNm Mediada por Codón sin Sentido , ARN Bicatenario/metabolismo , ARN de Hongos/metabolismo , ARN Largo no Codificante/metabolismo , Saccharomyces cerevisiae/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Mutación , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Bicatenario/química , ARN Bicatenario/genética , ARN de Hongos/química , ARN de Hongos/genética , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
6.
PLoS Genet ; 15(2): e1007999, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30818362

RESUMEN

GATA transcription factors are highly conserved among eukaryotes and play roles in transcription of genes implicated in cancer progression and hematopoiesis. However, although their consensus binding sites have been well defined in vitro, the in vivo selectivity for recognition by GATA factors remains poorly characterized. Using ChIP-Seq, we identified the Dal80 GATA factor targets in yeast. Our data reveal Dal80 binding to a large set of promoters, sometimes independently of GATA sites, correlating with nitrogen- and/or Dal80-sensitive gene expression. Strikingly, Dal80 was also detected across the body of promoter-bound genes, correlating with high expression. Mechanistic single-gene experiments showed that Dal80 spreading across gene bodies requires active transcription. Consistently, Dal80 co-immunoprecipitated with the initiating and post-initiation forms of RNA Polymerase II. Our work suggests that GATA factors could play dual, synergistic roles during transcription initiation and post-initiation steps, promoting efficient remodeling of the gene expression program in response to environmental changes.


Asunto(s)
ADN de Hongos/metabolismo , Factores de Transcripción GATA/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Regulación hacia Arriba , Sitios de Unión , Inmunoprecipitación de Cromatina , ADN de Hongos/química , Regulación Fúngica de la Expresión Génica , ARN Polimerasa II/metabolismo , Análisis de Secuencia de ARN , Transcripción Genética
7.
PLoS Genet ; 14(7): e1007465, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29975684

RESUMEN

Antisense (as)lncRNAs can regulate gene expression but the underlying mechanisms and the different cofactors involved remain unclear. Using Native Elongating Transcript sequencing, here we show that stabilization of antisense Exo2-sensitivite lncRNAs (XUTs) results in the attenuation, at the nascent transcription level, of a subset of highly expressed genes displaying prominent promoter-proximal nucleosome depletion and histone acetylation. Mechanistic investigations on the catalase gene ctt1 revealed that its induction following oxidative stress is impaired in Exo2-deficient cells, correlating with the accumulation of an asXUT. Interestingly, expression of this asXUT was also activated in wild-type cells upon oxidative stress, concomitant to ctt1 induction, indicating a potential attenuation feedback. This attenuation correlates with asXUT abundance, it is transcriptional, characterized by low RNAPII-ser5 phosphorylation, and it requires an histone deacetylase activity and the conserved Set2 histone methyltransferase. Finally, we identified Dicer as another RNA processing factor acting on ctt1 induction, but independently of Exo2. We propose that asXUTs could modulate the expression of their paired-sense genes when it exceeds a critical threshold, using a conserved mechanism independent of RNAi.


Asunto(s)
Regulación Fúngica de la Expresión Génica , ARN sin Sentido/metabolismo , ARN de Hongos/metabolismo , ARN Largo no Codificante/metabolismo , Schizosaccharomyces/genética , Acetilación , Catalasa/genética , Endorribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Estrés Oxidativo/genética , Regiones Promotoras Genéticas , Interferencia de ARN , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcripción Genética/genética
8.
RNA ; 24(2): 196-208, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29114019

RESUMEN

Antisense transcription can regulate sense gene expression. However, previous annotations of antisense transcription units have been based on detection of mature antisense long noncoding (aslnc)RNAs by RNA-seq and/or microarrays, only giving a partial view of the antisense transcription landscape and incomplete molecular bases for antisense-mediated regulation. Here, we used native elongating transcript sequencing to map genome-wide nascent antisense transcription in fission yeast. Strikingly, antisense transcription was detected for most protein-coding genes, correlating with low sense transcription, especially when overlapping the mRNA start site. RNA profiling revealed that the resulting aslncRNAs mainly correspond to cryptic Xrn1/Exo2-sensitive transcripts (XUTs). ChIP-seq analyses showed that antisense (as)XUT's expression is associated with specific histone modification patterns. Finally, we showed that asXUTs are controlled by the histone chaperone Spt6 and respond to meiosis induction, in both cases anti-correlating with levels of the paired-sense mRNAs, supporting physiological significance to antisense-mediated gene attenuation. Our work highlights that antisense transcription is much more extended than anticipated and might constitute an additional nonpromoter determinant of gene regulation complexity.


Asunto(s)
Regulación Fúngica de la Expresión Génica , ARN sin Sentido/biosíntesis , Schizosaccharomyces/genética , Transcripción Genética , Chaperonas de Histonas/metabolismo , Código de Histonas , Meiosis/genética , Extensión de la Cadena Peptídica de Translación , Interferencia de ARN , Estabilidad del ARN , ARN sin Sentido/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Análisis de Secuencia de ARN
9.
Nucleic Acids Res ; 46(11): 5426-5440, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29618061

RESUMEN

It is important to accurately regulate the expression of genes involved in development and environmental response. In the fission yeast Schizosaccharomyces pombe, meiotic genes are tightly repressed during vegetative growth. Despite being embedded in heterochromatin these genes are transcribed and believed to be repressed primarily at the level of RNA. However, the mechanism of facultative heterochromatin formation and the interplay with transcription regulation is not understood. We show genome-wide that HDAC-dependent histone deacetylation is a major determinant in transcriptional silencing of facultative heterochromatin domains. Indeed, mutation of class I/II HDACs leads to increased transcription of meiotic genes and accumulation of their mRNAs. Mechanistic dissection of the pho1 gene where, in response to phosphate, transient facultative heterochromatin is established by overlapping lncRNA transcription shows that the Clr3 HDAC contributes to silencing independently of SHREC, but in an lncRNA-dependent manner. We propose that HDACs promote facultative heterochromatin by establishing alternative transcriptional silencing.


Asunto(s)
Fosfatasa Ácida/genética , Proteínas de Ciclo Celular/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , ARN Largo no Codificante/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Ensamble y Desensamble de Cromatina/genética , Heterocromatina/metabolismo , Meiosis/genética , Procesamiento Proteico-Postraduccional/genética , Interferencia de ARN
10.
RNA Biol ; 16(6): 727-741, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30760080

RESUMEN

5-fluorouracil (5-FU) was isolated as an inhibitor of thymidylate synthase, which is important for DNA synthesis. The drug was later found to also affect the conserved 3'-5' exoribonuclease EXOSC10/Rrp6, a catalytic subunit of the RNA exosome that degrades and processes protein-coding and non-coding transcripts. Work on 5-FU's cytotoxicity has been focused on mRNAs and non-coding transcripts such as rRNAs, tRNAs and snoRNAs. However, the effect of 5-FU on long non-coding RNAs (lncRNAs), which include regulatory transcripts important for cell growth and differentiation, is poorly understood. RNA profiling of synchronized 5-FU treated yeast cells and protein assays reveal that the drug specifically inhibits a set of cell cycle regulated genes involved in mitotic division, by decreasing levels of the paralogous Swi5 and Ace2 transcriptional activators. We also observe widespread accumulation of different lncRNA types in treated cells, which are typically present at high levels in a strain lacking EXOSC10/Rrp6. 5-FU responsive lncRNAs include potential regulatory antisense transcripts that form double-stranded RNAs (dsRNAs) with overlapping sense mRNAs. Some of these transcripts encode proteins important for cell growth and division, such as the transcription factor Ace2, and the RNA exosome subunit EXOSC6/Mtr3. In addition to revealing a transcriptional effect of 5-FU action via DNA binding regulators involved in cell cycle progression, our results have implications for the function of putative regulatory lncRNAs in 5-FU mediated cytotoxicity. The data raise the intriguing possibility that the drug deregulates lncRNAs/dsRNAs involved in controlling eukaryotic cell division, thereby highlighting a new class of promising therapeutical targets.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Fluorouracilo/farmacología , ARN Largo no Codificante/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Genes cdc , Mitosis/efectos de los fármacos , ARN sin Sentido/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo
11.
Curr Genet ; 63(1): 29-33, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27230909

RESUMEN

Over the last decade, advances in transcriptomics have revealed that the pervasive transcription of eukaryotic genomes produces plethora of long noncoding RNAs (lncRNAs), which are now recognized as major regulators of multiple cellular processes. Although they have been thought to lack any protein-coding potential, recent ribosome-profiling data indicate that lncRNAs can interact with the translation machinery, leading to the production of functional peptides in some cases. In this perspective, we have explored the idea that translation can be part of the fate of cytoplasmic lncRNAs, raising the possibility for them to work as bifunctional RNAs, endowed with dual coding and regulatory functions.


Asunto(s)
Regulación de la Expresión Génica , Biosíntesis de Proteínas , ARN Largo no Codificante/genética , Animales , Citoplasma , Humanos , Degradación de ARNm Mediada por Codón sin Sentido , Transporte de ARN , ARN Largo no Codificante/metabolismo , Levaduras/genética , Levaduras/metabolismo
12.
EMBO Rep ; 16(2): 221-31, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25527408

RESUMEN

Eukaryotic cells respond to DNA double-strand breaks (DSBs) by activating a checkpoint that depends on the protein kinases Tel1/ATM and Mec1/ATR. Mec1/ATR is activated by RPA-coated single-stranded DNA (ssDNA), which arises upon nucleolytic degradation (resection) of the DSB. Emerging evidences indicate that RNA-processing factors play critical, yet poorly understood, roles in genomic stability. Here, we provide evidence that the Saccharomyces cerevisiae RNA decay factors Xrn1, Rrp6 and Trf4 regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA. The lack of Xrn1 inhibits ssDNA generation at the DSB by preventing the loading of the MRX complex. By contrast, DSB resection is not affected in the absence of Rrp6 or Trf4, but their lack impairs the recruitment of RPA, and therefore of Mec1, to the DSB. Rrp6 and Trf4 inactivation affects neither Rad51/Rad52 association nor DSB repair by homologous recombination (HR), suggesting that full Mec1 activation requires higher amount of RPA-coated ssDNA than HR-mediated repair. Noteworthy, deep transcriptome analyses do not identify common misregulated gene expression that could explain the observed phenotypes. Our results provide a novel link between RNA processing and genome stability.


Asunto(s)
ADN de Cadena Simple/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Replicación A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Reparación del ADN/fisiología , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
Methods ; 63(1): 25-31, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23523657

RESUMEN

Whole transcriptome RNA-Seq has emerged as a powerful tool in transcriptomics, enabling genome-wide quantitative analysis of gene expression and qualitative identification of novel coding or non-coding RNA species through transcriptome reassembly. Common protocols for preparation of RNA-Seq libraries include an RNA fragmentation step for which several RNA sizing techniques are commercially available. To date, there is no global information about their putative bias on transcriptome analysis. Here we compared the effects of RNase III- and zinc-mediated RNA fragmentation on transcript expression measurement and transcriptome reassembly in the budding yeast Saccharomyces cerevisiae. We observed that RNA cleavage by RNase III is heterogeneous along transcripts with a striking decrease of autocorrelation between adjacent nucleotides along the transcriptome. This had little impact on mRNA expression measurement, but specific classes of transcripts such as abundant non-coding RNAs were underrepresented in the libraries constructed using RNase III. Furthermore, zinc-mediated fragmentation allows proper reassembly of more transcripts, with more precise 5' and 3' ends. Together, our results show that transcriptome reassembly from RNA-Seq data is very sensitive to the RNA fragmentation technique, and that zinc-mediated fragmentation provides more robust and accurate transcript identification than cleavage by RNase III.


Asunto(s)
Perfilación de la Expresión Génica/métodos , ARN Mensajero/genética , ARN no Traducido/genética , Ribonucleasa III/genética , Secuencia de Bases , Biblioteca de Genes , Genoma , Saccharomyces cerevisiae , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Zinc/química
14.
Front RNA Res ; 1: 1244554, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37667796

RESUMEN

The expression of yeast long non-coding (lnc)RNAs is restricted by RNA surveillance machineries, including the cytoplasmic 5'-3' exonuclease Xrn1 which targets a conserved family of lncRNAs defined as XUTs, and that are mainly antisense to protein-coding genes. However, the co-factors involved in the degradation of these transcripts and the underlying molecular mechanisms remain largely unknown. Here, we show that two RNA helicases, Dbp2 and Mtr4, act as global regulators of XUTs expression. Using RNA-Seq, we found that most of them accumulate upon Dbp2 inactivation or Mtr4 depletion. Mutants of the cytoplasmic RNA helicases Ecm32, Ski2, Slh1, Dbp1, and Dhh1 did not recapitulate this global stabilization of XUTs, suggesting that XUTs decay is specifically controlled by Dbp2 and Mtr4. Notably, Dbp2 and Mtr4 affect XUTs independently of their configuration relative to their paired-sense mRNAs. Finally, we show that the effect of Dbp2 on XUTs depends on a cytoplasmic localization. Overall, our data indicate that Dbp2 and Mtr4 are global regulators of lncRNAs expression and contribute to shape the non-coding transcriptome together with RNA decay machineries.

15.
Nat Commun ; 14(1): 3587, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328480

RESUMEN

The packaging of the genetic material into chromatin imposes the remodeling of this barrier to allow efficient transcription. RNA polymerase II activity is coupled with several histone modification complexes that enforce remodeling. How RNA polymerase III (Pol III) counteracts the inhibitory effect of chromatin is unknown. We report here a mechanism where RNA Polymerase II (Pol II) transcription is required to prime and maintain nucleosome depletion at Pol III loci and contributes to efficient Pol III recruitment upon re-initiation of growth from stationary phase in Fission yeast. The Pcr1 transcription factor participates in the recruitment of Pol II, which affects local histone occupancy through the associated SAGA complex and a Pol II phospho-S2 CTD / Mst2 pathway. These data expand the central role of Pol II in gene expression beyond mRNA synthesis.


Asunto(s)
Ensamble y Desensamble de Cromatina , ARN Polimerasa II , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Cromatina/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Transcripción Genética
16.
EMBO J ; 27(18): 2411-21, 2008 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-18716630

RESUMEN

The yeast URA2 gene, encoding the rate-limiting enzyme of UTP biosynthesis, is transcriptionally activated by UTP shortage. In contrast to other genes of the UTP pathway, this activation is not governed by the Ppr1 activator. Moreover, it is not due to an increased recruitment of RNA polymerase II at the URA2 promoter, but to its much more effective progression beyond the URA2 mRNA start site(s). Regulatory mutants constitutively expressing URA2 resulted from cis-acting deletions upstream of the transcription initiator region, or from amino-acid replacements altering the RNA polymerase II Switch 1 loop domain, such as rpb1-L1397S. These two mutation classes allowed RNA polymerase to progress downstream of the URA2 mRNA start site(s). rpb1-L1397S had similar effects on IMD2 (IMP dehydrogenase) and URA8 (CTP synthase), and thus specifically activated the rate-limiting steps of UTP, GTP and CTP biosynthesis. These data suggest that the Switch 1 loop of RNA polymerase II, located at the downstream end of the transcription bubble, may operate as a specific sensor of the nucleoside triphosphates available for transcription.


Asunto(s)
Aspartato Carbamoiltransferasa/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Regulación de la Expresión Génica , Mutación , Nucleósidos/química , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Aspartato Carbamoiltransferasa/metabolismo , Sitios de Unión , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , IMP Deshidrogenasa/genética , Modelos Biológicos , Regiones Promotoras Genéticas , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
17.
Curr Genet ; 57(5): 327-34, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21761155

RESUMEN

The catalytic center of yeast RNA polymerase II and III contains an acidic loop borne by their second largest subunit (Rpb2-(832)GYNQED(837), Rpc128-(764)GYDIED(769)) and highly conserved in all cellular and viral DNA-dependent RNA polymerases. A site-directed mutagenesis of this dicarboxylic motif reveals its strictly essential character in RNA polymerase III, with a slightly less stringent pattern in RNA polymerase II, where rpb2-E836Q and other substitutions completely prevent growth, whereas rpb2-E836A combines a dominant growth defect with severe lethal sectoring. A mild but systematic increase in RNA polymerase occupancy and a strict dependency on the transcript cleavage factor TFIIS (Dst1) also suggest a slower rate of translocation or higher probability of transcriptional stalling in this mutation. A conserved nucleotide triphosphate funnel domain binds the Rpb2-(832)GYNQED(837) loop by an Rpb2-R(1020)/Rpb2-D(837) salt-bridge. Molecular dynamic simulations reveal a second bridge (Rpb1-K(752)/Rpb2-E(836)), which may account for the critical role of the invariant Rpb2-E(836). Rpb2-E(836) and the funnel domain are not found among the RNA-dependent eukaryotic RNA polymerases and may thus represent a specific adaptation to double-stranded DNA templates.


Asunto(s)
ARN Polimerasa III/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos/genética , Dominio Catalítico , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Subunidades de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Polimerasa III/química , ARN Polimerasa III/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
18.
RNA ; 15(3): 406-19, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19141608

RESUMEN

Terminal balls detected at the 5'-end of nascent ribosomal transcripts act as pre-rRNA processing complexes and are detected in all eukaryotes examined, resulting in illustrious Christmas tree images. Terminal balls (also known as SSU-processomes) compaction reflects the various stages of cotranscriptional ribosome assembly. Here, we have followed SSU-processome compaction in vivo by use of a chromatin immunoprecipitation (Ch-IP) approach and shown, in agreement with electron microscopy analysis of Christmas trees, that it progressively condenses to come in close proximity to the 5'-end of the 25S rRNA gene. The SSU-processome is comprised of independent autonomous building blocks that are loaded onto nascent pre-rRNAs and assemble into catalytically active pre-rRNA processing complexes in a stepwise and highly hierarchical process. Failure to assemble SSU-processome subcomplexes with proper kinetics triggers a nucleolar surveillance pathway that targets misassembled pre-rRNAs otherwise destined to mature into small subunit 18S rRNA for polyadenylation, preferentially by TRAMP5, and degradation by the 3' to 5' exoribonucleolytic activity of the Exosome. Trf5 colocalized with nascent pre-rRNPs, indicating that this nucleolar surveillance initiates cotranscriptionally.


Asunto(s)
Nucléolo Celular/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Precursores del ARN/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Inmunoprecipitación de Cromatina , Humanos , Precursores del ARN/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Saccharomyces cerevisiae/genética
19.
Noncoding RNA ; 7(3)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34449682

RESUMEN

The Nonsense-Mediated mRNA Decay (NMD) has been classically viewed as a translation-dependent RNA surveillance pathway degrading aberrant mRNAs containing premature stop codons. However, it is now clear that mRNA quality control represents only one face of the multiple functions of NMD. Indeed, NMD also regulates the physiological expression of normal mRNAs, and more surprisingly, of long non-coding (lnc)RNAs. Here, we review the different mechanisms of NMD activation in yeast and mammals, and we discuss the molecular bases of the NMD sensitivity of lncRNAs, considering the functional roles of NMD and of translation in the metabolism of these transcripts. In this regard, we describe several examples of functional micropeptides produced from lncRNAs. We propose that translation and NMD provide potent means to regulate the expression of lncRNAs, which might be critical for the cell to respond to environmental changes.

20.
Commun Biol ; 4(1): 627, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035436

RESUMEN

Patients with Crohn's disease exhibit abnormal colonization of the intestine by adherent invasive E. coli (AIEC). They adhere to epithelial cells, colonize them and survive inside macrophages. It appeared recently that AIEC LF82 adaptation to phagolysosomal stress involves a long lag phase in which many LF82 cells become antibiotic tolerant. Later during infection, they proliferate in vacuoles and form colonies harboring dozens of LF82 bacteria. In the present work, we investigated the mechanism sustaining this phase of growth. We found that intracellular LF82 produced an extrabacterial matrix that acts as a biofilm and controls the formation of LF82 intracellular bacterial communities (IBCs) for several days post infection. We revealed the crucial role played by the pathogenicity island encoding the yersiniabactin iron capture system to form IBCs and for optimal LF82 survival. These results illustrate that AIECs use original strategies to establish their replicative niche within macrophages.


Asunto(s)
Enfermedad de Crohn/microbiología , Células Epiteliales/microbiología , Fagosomas/metabolismo , Animales , Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Enfermedad de Crohn/metabolismo , Células Epiteliales/metabolismo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/metabolismo , Microbioma Gastrointestinal , Humanos , Mucosa Intestinal/microbiología , Intestinos , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Fagosomas/fisiología , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA