Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Insects ; 14(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37233033

RESUMEN

Mosquito vector-borne diseases such as malaria and dengue pose a major threat to human health. Personal protection from mosquito blood feeding is mostly by treating clothing with insecticides and the use of repellents on clothing and skin. Here, we developed a low-voltage, mosquito-resistant cloth (MRC) that blocked all blood feeding across the textile and was flexible and breathable. The design was based on mosquito head and proboscis morphometrics, the development of a novel 3-D textile with the outer conductive layers insulated from each other with an inner, non-conductive woven mesh, and the use of a DC (direct current; extra-low-voltage) resistor-capacitor. Blockage of blood feeding was measured using host-seeking Aedes aegypti adult female mosquitoes and whether they could blood feed across the MRC and an artificial membrane. Mosquito blood feeding decreased as voltage increased from 0 to 15 volts. Blood feeding inhibition was 97.8% at 10 volts and 100% inhibition at 15 volts, demonstrating proof of concept. Current flow is minimal since conductance only occurs when the mosquito proboscis simultaneously touches the outside layers of the MRC and is then quickly repelled. Our results demonstrated for the first time the use of a biomimetic, mosquito-repelling technology to prevent blood feeding using extra-low energy consumption.

2.
Insects ; 12(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34357296

RESUMEN

Garments treated with chemical insecticides are commonly used to prevent mosquito bites. Resistance to insecticides, however, is threatening the efficacy of this technology, and people are increasingly concerned about the potential health impacts of wearing insecticide-treated clothing. Here, we report a mathematical model for fabric barriers that resist bites from Aedes aegypti mosquitoes based on textile physical structure and no insecticides. The model was derived from mosquito morphometrics and analysis of mosquito biting behavior. Woven filter fabrics, precision polypropylene plates, and knitted fabrics were used for model validation. Then, based on the model predictions, prototype knitted textiles and garments were developed that prevented mosquito biting, and comfort testing showed the garments to possess superior thermophysiological properties. Our fabrics provided a three-times greater bite resistance than the insecticide-treated cloth. Our predictive model can be used to develop additional textiles in the future for garments that are highly bite resistant to mosquitoes.

3.
Bioengineering (Basel) ; 7(4)2020 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33114301

RESUMEN

Craniofacial microsomia is a congenital deformity caused by asymmetric development of the skull (cranium) and face before birth. Current treatments include corrective surgery and replacement of the deformed structure using autograft tissue, which results in donor site morbidity. An alternative therapy can be achieved by developing a resorbable scaffold for skeletal muscle regeneration which will help restore the symmetry and function of the facial muscles and reduce donor site morbidity. Two resorbable weft knitted scaffolds were fabricated using poly(ε-caprolactone) multifilament yarns with unique auxetic design structures possessing negative Poisson's ratio (NPR). These scaffolds exhibit their NPR elasticity through an increase in total volume as well as no lateral narrowing when stretched longitudinally, which can provide orientated mechanical supports to the cell growth of skeletal muscle regeneration. These scaffolds were evaluated for the required physical properties, mechanical performance and biocompatibility by culturing them with neonatal human dermal fibroblasts so as to determine their cell metabolic activity, cell attachment and proliferation. This study can facilitate the understanding and engineering of textile-based scaffolds for tissues/organs. The work also paves a pathway to emerge the NPR textiles into tissue engineering, which has an extensive potential for biomedical end-uses.

4.
Insects ; 11(11)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114752

RESUMEN

Mosquito-borne malaria kills 429,000 people each year with the problem being acute in sub-Saharan Africa. The successes gained with long-lasting pyrethroid-treated bednets are now in jeopardy because of wide-spread, pyrethroid resistance in mosquitoes. Using crowd modeling theory normalized for standard bednet architecture, we were able to design an attract-trap-kill technology for mosquitoes that does not require insecticides. Using three-dimensional polyester knitting and heat fixation, trap funnels were developed with high capture efficacy with no egression under worst-case laboratory conditions. Field testing in Africa in WHO huts with Gen1-3 T (trap)-Nets validated our model, and as predicted, Gen3 had the highest efficacy with a 4.3-fold greater trap-kill rate with no deterrence or repellency compared to Permanet 2.0, the most common bednet in Africa. A T-Net population model was developed based on field data to predict community-level mosquito control compared to a pyrethroid bednet. This model showed the Gen3 non-insecticidal T-Net under field conditions in Africa against pyrethroid resistant mosquitoes was 12.7-fold more efficacious than single chemical, pyrethroid-treated nets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA