Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biochem J ; 442(3): 495-505, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22150271

RESUMEN

HMGNs are nucleosome-binding proteins that alter the pattern of histone modifications and modulate the binding of linker histones to chromatin. The HMGN3 family member exists as two splice forms, HMGN3a which is full-length and HMGN3b which lacks the C-terminal RD (regulatory domain). In the present study, we have used the Glyt1 (glycine transporter 1) gene as a model system to investigate where HMGN proteins are bound across the locus in vivo, and to study how the two HMGN3 splice variants affect histone modifications and gene expression. We demonstrate that HMGN1, HMGN2, HMGN3a and HMGN3b are bound across the Glyt1 gene locus and surrounding regions, and are not enriched more highly at the promoter or putative enhancer. We conclude that the peaks of H3K4me3 (trimethylated Lys(4) of histone H3) and H3K9ac (acetylated Lys(9) of histone H3) at the active Glyt1a promoter do not play a major role in recruiting HMGN proteins. HMGN3a/b binding leads to increased H3K14 (Lys(14) of histone H3) acetylation and stimulates Glyt1a expression, but does not alter the levels of H3K4me3 or H3K9ac enrichment. Acetylation assays show that HMGN3a stimulates the ability of PCAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] to acetylate nucleosomal H3 in vitro, whereas HMGN3b does not. We propose a model where HMGN3a/b-stimulated H3K14 acetylation across the bodies of large genes such as Glyt1 can lead to more efficient transcription elongation and increased mRNA production.


Asunto(s)
Cromatina/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Proteínas HMGN/metabolismo , Histonas/metabolismo , Acetilación , Animales , Sitios de Unión , Línea Celular , Proteínas HMGN/genética , Histonas/genética , Ratones , Transfección
2.
Epigenetics Chromatin ; 12(1): 73, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31831052

RESUMEN

BACKGROUND: Members of the HMGN protein family modulate chromatin structure and influence epigenetic modifications. HMGN1 and HMGN2 are highly expressed during early development and in the neural stem/progenitor cells of the developing and adult brain. Here, we investigate whether HMGN proteins contribute to the chromatin plasticity and epigenetic regulation that is essential for maintaining pluripotency in stem cells. RESULTS: We show that loss of Hmgn1 or Hmgn2 in pluripotent embryonal carcinoma cells leads to increased levels of spontaneous neuronal differentiation. This is accompanied by the loss of pluripotency markers Nanog and Ssea1, and increased expression of the pro-neural transcription factors Neurog1 and Ascl1. Neural stem cells derived from these Hmgn-knockout lines also show increased spontaneous neuronal differentiation and Neurog1 expression. The loss of HMGN2 leads to a global reduction in H3K9 acetylation, and disrupts the profile of H3K4me3, H3K9ac, H3K27ac and H3K122ac at the Nanog and Oct4 loci. At endodermal/mesodermal genes, Hmgn2-knockout cells show a switch from a bivalent to a repressive chromatin configuration. However, at neuronal lineage genes whose expression is increased, no epigenetic changes are observed and their bivalent states are retained following the loss of HMGN2. CONCLUSIONS: We conclude that HMGN1 and HMGN2 maintain the identity of pluripotent embryonal carcinoma cells by optimising the pluripotency transcription factor network and protecting the cells from precocious differentiation. Our evidence suggests that HMGN2 regulates active and bivalent genes by promoting an epigenetic landscape of active histone modifications at promoters and enhancers.


Asunto(s)
Cromatina/metabolismo , Proteína HMGN2/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Autorrenovación de las Células , Proteína HMGN1/genética , Proteína HMGN1/metabolismo , Proteína HMGN2/genética , Histonas/metabolismo , Ratones , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Procesamiento Proteico-Postraduccional
3.
Mol Cell Biol ; 24(9): 3747-56, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15082770

RESUMEN

HMGN proteins promote chromatin unfolding, enhance access to nucleosomes, and modulate transcription from chromatin templates. It is not known whether they act indiscriminately as general modulators of transcription or whether they regulate specific gene expression. Here, we investigated the role of HMGN3, a recently discovered HMGN family member, in transcription in vivo. We created cell lines overexpressing HMGN3a or its splice variant, HMGN3b, and analyzed their gene expression profiles using microarrays and reverse transcriptase PCR. We found that ectopic expression of HMGN3a alters the expression of approximately 0.8% of genes. Both HMGN3a and HMGN3b upregulate the expression of the glycine transporter 1 gene (Glyt1). Glyt1 encodes a membrane transporter that regulates the glycine concentration in synaptic junctions. Both GLYT1 and HMGN3 are highly expressed in glia cells and the eye, and we show that both proteins are coexpressed in the retina. Chromatin immunoprecipitation assays showed that HMGN3 protein is recruited to a region of the Glyt1 gene encompassing the Glyt1a transcriptional start site. These results suggest that HMGN3 regulates Glyt1 expression and demonstrate that members of the HMGN family can regulate the transcription of specific genes.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Regulación de la Expresión Génica , Proteínas HMGN/metabolismo , Isoformas de Proteínas/metabolismo , Transcripción Genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Línea Celular Tumoral , Perfilación de la Expresión Génica , Proteínas de Transporte de Glicina en la Membrana Plasmática , Proteínas HMGN/genética , Ratones , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Isoformas de Proteínas/genética , Retina/citología , Retina/metabolismo
4.
Cancer Res ; 65(15): 6711-8, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16061652

RESUMEN

We report that loss of HMGN1, a nucleosome-binding protein that alters the compaction of the chromatin fiber, increases the cellular sensitivity to ionizing radiation and the tumor burden of mice. The mortality and tumor burden of ionizing radiation-treated Hmgn1-/- mice is higher than that of their Hmgn1+/+ littermates. Hmgn1-/- fibroblasts have an altered G2-M checkpoint activation and are hypersensitive to ionizing radiation. The ionizing radiation hypersensitivity and the aberrant G2-M checkpoint activation of Hmgn1-/- fibroblasts can be reverted by transfections with plasmids expressing wild-type HMGN1, but not with plasmids expressing mutant HMGN proteins that do not bind to chromatin. Transformed Hmgn1-/- fibroblasts grow in soft agar and produce tumors in nude mice with a significantly higher efficiency than Hmgn1+/+ fibroblasts, suggesting that loss of HMGN1 protein disrupts cellular events controlling proliferation and growth. Hmgn1-/- mice have a higher incidence of multiple malignant tumors and metastases than their Hmgn1+/+ littermates. We suggest that HMGN1 optimizes the cellular response to ionizing radiation and to other tumorigenic events; therefore, loss of this protein increases the tumor burden in mice.


Asunto(s)
Transformación Celular Neoplásica/efectos de la radiación , Proteína HMGN1/deficiencia , Neoplasias Inducidas por Radiación/metabolismo , Tolerancia a Radiación/fisiología , Animales , División Celular/efectos de la radiación , Transformación Celular Neoplásica/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/efectos de la radiación , Fase G2/efectos de la radiación , Proteína HMGN1/metabolismo , Proteína HMGN1/fisiología , Masculino , Ratones , Ratones Desnudos , Neoplasias Inducidas por Radiación/patología
5.
Nucleic Acids Res ; 30(24): 5416-24, 2002 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-12490710

RESUMEN

We report for the first time an analysis of the ATPase activity of human DNA topoisomerase (topo) IIbeta. We show that topo IIbeta is a DNA-dependent ATPase that appears to fit Michaelis-Menten kinetics. The ATPase activity is stimulated 44-fold by DNA. The k(cat) for ATP hydrolysis by human DNA topo IIbeta in the presence of DNA is 2.25 s(-1). We have characterised a topo IIbeta derivative which carries a mutation in the ATPase domain (S165R). S165R reduced the kcat for ATP hydrolysis by 7-fold, to 0.32 s(-1), while not significantly altering the apparent K(m). The specificity constant for the interaction between ATP and topo IIbeta (kcat/K(mapp)) showed a 90% reduction for betaS165R. The DNA binding affinity and ATP-independent DNA cleavage activity of the enzyme are unaffected by this mutation. However, the strand passage activity is reduced by 80%, presumably due to reduced ATP hydrolysis. The mutant enzyme is unable to complement ts yeast topo II in vivo. We have used computer modelling to predict the arrangement of key residues at the ATPase active site of topo IIbeta. Ser165 is predicted to lie very close to the bound nucleotide, and the S165R mutation could thus influence both ATP binding and ADP dissociation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión/genética , ADN/genética , ADN/farmacología , ADN Helicasas/química , ADN Helicasas/genética , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN , Relación Dosis-Respuesta a Droga , Prueba de Complementación Genética , Humanos , Hidrólisis/efectos de los fármacos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Serina/genética
6.
FEBS J ; 272(22): 5853-63, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16279949

RESUMEN

HMGN1 is a nuclear protein that binds to nucleosomes and alters the accessibility of regulatory factors to their chromatin targets. To elucidate its biological function and identify specific HMGN1 target genes, we generated Hmgn1-/- mice. DNA microarray analysis of Hmgn1+/+ and Hmgn1-/- embryonic fibroblasts identified N-cadherin as a potential HMGN1 gene target. RT-PCR and western blot analysis confirmed a linkage between HMGN1 expression and N-cadherin levels. In both transformed and primary mouse embryonic fibroblasts (MEFs), HMGN1 acted as negative regulator of N-cadherin expression. Likewise, the N-cadherin levels in early embryos of Hmgn1-/- mice were higher than those of their Hmgn1+/+ littermates. Loss of HMGN1 increased the adhesiveness, motility and aggregation potential of Hmgn1-/- MEFs, a phenotype consistent with increased levels of N-cadherin protein. Re-expression of wild-type HMGN1, but not of the mutant HMGN1 protein that does not bind to chromatin, in Hmgn1-/- MEFs, decreased the levels of N-cadherin and restored the Hmgn1+/+ phenotype. These studies demonstrate a role for HMGN1 in the regulation of specific gene expression. We suggest that in MEFs, and during early mouse development, the interaction of HMGN1 with chromatin down-regulates the expression of N-cadherin.


Asunto(s)
Cadherinas/metabolismo , Cromosomas/química , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteína HMGN1/metabolismo , Animales , Western Blotting , Adhesión Celular , Moléculas de Adhesión Celular , Línea Celular Transformada , Movimiento Celular , Células Cultivadas , Cromatina/metabolismo , Regulación hacia Abajo , Embrión de Mamíferos , Fibroblastos/citología , Marcación de Gen , Proteína HMGN1/genética , Ratones , Ratones Noqueados , Mutación , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , beta Catenina/metabolismo
7.
PLoS One ; 7(11): e50521, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209767

RESUMEN

INTRODUCTION: In recent years much progress has been made in the development of tools for systems biology to study the levels of mRNA and protein, and their interactions within cells. However, few multiplexed methodologies are available to study cell signalling directly at the transcription factor level. METHODS: Here we describe a sensitive, plasmid-based RNA reporter methodology to study transcription factor activation in mammalian cells, and apply this technology to profiling 60 transcription factors in parallel. The methodology uses two robust and easily accessible detection platforms; quantitative real-time PCR for quantitative analysis and DNA microarrays for parallel, higher throughput analysis. FINDINGS: We test the specificity of the detection platforms with ten inducers and independently validate the transcription factor activation. CONCLUSIONS: We report a methodology for the multiplexed study of transcription factor activation in mammalian cells that is direct and not theoretically limited by the number of available reporters.


Asunto(s)
Plásmidos/genética , Biología de Sistemas/métodos , Western Blotting , Cloruro de Cadmio/farmacología , Línea Celular , Colforsina/farmacología , Dexametasona/farmacología , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
PLoS One ; 3(3): e1754, 2008 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-18335031

RESUMEN

BACKGROUND: Type II DNA topoisomerases (topos) are essential enzymes needed for the resolution of topological problems that occur during DNA metabolic processes. Topos carry out an ATP-dependent strand passage reaction whereby one double helix is passed through a transient break in another. Humans have two topoII isoforms, alpha and beta, which while enzymatically similar are differentially expressed and regulated, and are thought to have different cellular roles. The C-terminal domain (CTD) of the enzyme has the most diversity, and has been implicated in regulation. We sought to investigate the impact of the CTD domain on activity. METHODOLOGY/PRINCIPLE FINDINGS: We have investigated the role of the human topoII C-terminal domain by creating constructs encoding C-terminally truncated recombinant topoIIalpha and beta and topoIIalpha+beta-tail and topoIIbeta+alpha-tail chimeric proteins. We then investigated function in vivo in a yeast system, and in vitro in activity assays. We find that the C-terminal domain of human topoII isoforms is needed for in vivo function of the enzyme, but not needed for cleavage activity. C-terminally truncated enzymes had similar strand passage activity to full length enzymes, but the presence of the opposite C-terminal domain had a large effect, with the topoIIalpha-CTD increasing activity, and the topoIIbeta-CTD decreasing activity. CONCLUSIONS/SIGNIFICANCE: In vivo complementation data show that the topoIIalpha C-terminal domain is needed for growth, but the topoIIbeta isoform is able to support low levels of growth without a C-terminal domain. This may indicate that topoIIbeta has an additional localisation signal. In vitro data suggest that, while the lack of any C-terminal domain has little effect on activity, the presence of either the topoIIalpha or beta C-terminal domain can affect strand passage activity. Data indicates that the topoIIbeta-CTD may be a negative regulator. This is the first report of in vitro data with chimeric human topoIIs.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/genética , Prueba de Complementación Genética , Humanos , Hidrólisis , Fosforilación , Plásmidos
10.
EMBO J ; 24(17): 3038-48, 2005 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16096646

RESUMEN

The acetylation levels of lysine residues in nucleosomes, which are determined by the opposing activities of histone acetyltransferases (HATs) and deacetylases, play an important role in regulating chromatin-related processes, including transcription. We report that HMGN1, a nucleosomal binding protein that reduces the compaction of the chromatin fiber, increases the levels of acetylation of K14 in H3. The levels of H3K14ac in Hmgn1-/- cells are lower than in Hmgn1+/+ cells. Induced expression of wild-type HMGN1, but not of a mutant that does not bind to chromatin, in Hmgn1-/- cells elevates the levels of H3K14ac. In vivo, HMGN1 elevates the levels of H3K14ac by enhancing the action of HAT. In vitro, HMGN1 enhances the ability of PCAF to acetylate nucleosomal, but not free, H3. Thus, HMGN1 modulates the levels of H3K14ac by binding to chromatin. We suggest that HMGN1, and perhaps similar architectural proteins, modulates the levels of acetylation in chromatin by altering the equilibrium generated by the opposing enzymatic activities that continuously modify and de-modify the histone tails in nucleosomes.


Asunto(s)
Cromatina/metabolismo , Proteína HMGN1/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Acetilación , Acetiltransferasas/metabolismo , Animales , Anisomicina/farmacología , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Fibroblastos , Regulación de la Expresión Génica , Proteína HMGN1/genética , Histona Acetiltransferasas , Ratones , Mutación , Nucleosomas/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Factores de Transcripción/metabolismo , Factores de Transcripción p300-CBP
11.
Mol Cell ; 15(4): 573-84, 2004 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-15327773

RESUMEN

Here we demonstrate that HMGN1, a nuclear protein that binds to nucleosomes and reduces the compaction of the chromatin fiber, modulates histone posttranslational modifications. In Hmgn1-/- cells, loss of HMGN1 elevates the steady-state levels of phospho-S10-H3 and enhances the rate of stress-induced phosphorylation of S10-H3. In vitro, HMGN1 reduces the rate of phospho-S10-H3 by hindering the ability of kinases to modify nucleosomal, but not free, H3. During anisomycin treatment, the phosphorylation of HMGN1 precedes that of H3 and leads to a transient weakening of the binding of HMGN1 to chromatin. We propose that the reduced binding of HMGN1 to nucleosomes, or the absence of the protein, improves access of anisomysin-induced kinases to H3. Thus, the levels of posttranslational modifications in chromatin are modulated by nucleosome binding proteins that alter the ability of enzymatic complexes to access and modify their nucleosomal targets.


Asunto(s)
Proteína HMGN1/metabolismo , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Anisomicina/farmacología , Células Cultivadas , Cromatina/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Regulación de la Expresión Génica , Genes Inmediatos-Precoces , Proteína HMGN1/genética , Ratones , Ratones Noqueados , Nucleosomas/metabolismo , Fosforilación , Unión Proteica , Inhibidores de la Síntesis de la Proteína/farmacología
12.
EMBO J ; 22(7): 1665-75, 2003 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-12660172

RESUMEN

We report that HMGN1, a nucleosome binding protein that destabilizes the higher-order chromatin structure, modulates the repair rate of ultraviolet light (UV)-induced DNA lesions in chromatin. Hmgn1(-/-) mouse embryonic fibroblasts (MEFs) are hypersensitive to UV, and the removal rate of photoproducts from the chromatin of Hmgn1(-/-) MEFs is decreased as compared with the chromatin of Hmgn1(+/+) MEFs; yet, host cell reactivation assays and DNA array analysis indicate that the nucleotide excision repair (NER) pathway in the Hmgn1(-/-) MEFs remains intact. The UV hypersensitivity of Hmgn1(-/-) MEFs could be rescued by transfection with plasmids expressing wild-type HMGN1 protein, but not with plasmids expressing HMGN1 mutants that do not bind to nucleosomes or do not unfold chromatin. Transcriptionally active genes, the main target of the NER pathways in mice, contain HMGN1 protein, and loss of HMGN1 protein reduces the accessibility of transcribed genes to nucleases. By reducing the compaction of the higher-order chromatin structure, HMGN1 facilitates access to UV-damaged DNA sites and enhances the rate of DNA repair in chromatin.


Asunto(s)
Cromatina/genética , Reparación del ADN/fisiología , Proteína HMGN1/fisiología , Animales , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Ratones , Ratones Mutantes , Pruebas de Precipitina , Piel/citología , Piel/metabolismo , Piel/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA