Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecol Evol ; 11(23): 17117-17131, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938497

RESUMEN

There is a growing demand for ecological restoration using suitable seeds following international standards or national legal demands for local seed-sourcing. However, before selecting the appropriate geographic origin of seeds, it is vital to explore taxonomic complexity related to the focal taxa. We used ddRAD-seq to screen genomic diversity within Carex bigelowii s.lat. focussing on Norway. This species complex is considered a candidate for seeding, but presents considerable morphological, ecological, and genetic variation. The genetic structure of 132 individuals of C. bigelowii s.lat., including Carex nigra as an outgroup, was explored using ordinations, clustering analyses, and a genetic barrier algorithm. Two highly divergent clusters were evident, supporting the recognition of two taxonomic units "C. dacica" and C. bigelowii "subsp. bigelowii". Previously defined seed-sourcing regions for C. bigelowii s.lat. did not consider the known taxonomic complexity, and therefore interpreted the overall genetic structure as seed-sourcing regions, not taxa. We estimated genetic neighborhood sizes within each taxon to be 100-150 km and 300 km, respectively, indicating species-specific delimitations of local seed-sourcing regions. Frequent hybrids, local genetic distinctiveness, and suggested ecotypes add complexity to the discussed seed-sourcing regions. Our results show how genomic screening of diversity and structure in a species complex can alleviate the taxonomic impediment, inform practical questions, and legal requirements related to seed-sourcing, and together with traditional taxonomic work provide necessary information for a sound management of biodiversity.

2.
Ambio ; 49(3): 678-692, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30929249

RESUMEN

Changes in Arctic vegetation can have important implications for trophic interactions and ecosystem functioning leading to climate feedbacks. Plot-based vegetation surveys provide detailed insight into vegetation changes at sites around the Arctic and improve our ability to predict the impacts of environmental change on tundra ecosystems. Here, we review studies of changes in plant community composition and phenology from both long-term monitoring and warming experiments in Arctic environments. We find that Arctic plant communities and species are generally sensitive to warming, but trends over a period of time are heterogeneous and complex and do not always mirror expectations based on responses to experimental manipulations. Our findings highlight the need for more geographically widespread, integrated, and comprehensive monitoring efforts that can better resolve the interacting effects of warming and other local and regional ecological factors.


Asunto(s)
Ecosistema , Tundra , Regiones Árticas , Cambio Climático , Plantas , Estaciones del Año
3.
AoB Plants ; 72015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25876627

RESUMEN

Long-distance dispersal (LDD) processes influence the founder effect on islands. We use genetic data for 25 Atlantic species and similarities among regional floras to analyse colonization, and test whether the genetic founder effect on five islands is associated with dispersal distance, island size and species traits. Most species colonized postglacially via multiple dispersal events from several source regions situated 280 to >3000 km away, and often not from the closest ones. A strong founder effect was observed for insect-pollinated mixed maters, and it increased with dispersal distance and decreased with island size in accordance with the theory of island biogeography. Only a minor founder effect was observed for wind-pollinated outcrossing species. Colonization patterns were largely congruent, indicating that despite the importance of stochasticity, LDD is mainly determined by common factors, probably dispersal vectors. Our findings caution against a priori assuming a single, close source region in biogeographic analyses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA