Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39116009

RESUMEN

Bragg coherent X-ray diffraction imaging (BCDI) has emerged as a powerful technique for strain imaging and morphology reconstruction of nanometre-scale crystals. However, BCDI often suffers from angular distortions that appear during data acquisition, caused by radiation pressure, heating or imperfect scanning stages. This limits the applicability of BCDI, in particular for small crystals and high-flux X-ray beams. Here, we present a pre-processing algorithm that recovers the 3D datasets from the BCDI dataset measured under the impact of large angular distortions. We systematically investigate the performance of this method for different levels of distortion and find that the algorithm recovers the correct angles for distortions up to 16.4× (1640%) the angular step size dθ = 0.004°. We also show that the angles in a continuous scan can be recovered with high accuracy. As expected, the correction provides marked improvements in the subsequent phase retrieval.

2.
J Synchrotron Radiat ; 31(Pt 3): 557-565, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656773

RESUMEN

Synchrotron-radiation-based techniques are a powerful tool for the investigation of materials. In particular, the availability of highly brilliant sources has opened the possibility to develop techniques sensitive to dynamics at the atomic scale such as X-ray photon correlation spectroscopy (XPCS). XPCS is particularly relevant in the study of glasses, which have been often investigated at the macroscopic scale by, for example, differential scanning calorimetry. Here, we show how to adapt a Flash calorimeter to combine XPCS and calorimetric scans. This setup paves the way to novel experiments requiring dynamical and thermodynamic information, ranging from the study of the crystallization kinetics to the study of the glass transition in systems that can be vitrified thanks to the high cooling rates reachable with an ultrafast calorimeter.

3.
J Synchrotron Radiat ; 31(Pt 3): 527-539, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38597746

RESUMEN

A new experimental setup combining X-ray photon correlation spectroscopy (XPCS) in the hard X-ray regime and a high-pressure sample environment has been developed to monitor the pressure dependence of the internal motion of complex systems down to the atomic scale in the multi-gigapascal range, from room temperature to 600 K. The high flux of coherent high-energy X-rays at fourth-generation synchrotron sources solves the problems caused by the absorption of diamond anvil cells used to generate high pressure, enabling the measurement of the intermediate scattering function over six orders of magnitude in time, from 10-3 s to 103 s. The constraints posed by the high-pressure generation such as the preservation of X-ray coherence, as well as the sample, pressure and temperature stability, are discussed, and the feasibility of high-pressure XPCS is demonstrated through results obtained on metallic glasses.

4.
J Chem Phys ; 161(5)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39105556

RESUMEN

We investigated the effect of the NaCl concentration (0.3-2M) on the structure and dynamics of hen egg yolk at room temperature and during thermal gelation at temperatures in the range of 66-90 °C utilizing low-dose x-ray photon correlation spectroscopy in ultra-small angle x-ray scattering geometry. With an increase in the salt concentration, we observe progressive structural and dynamic changes at room temperature, indicating the disruption of yolk components such as yolk-granules and yolk-plasma proteins. Temperature- and salt-dependent structural and dynamic investigations suggest a delay in the gel formation and aggregation of yolk low-density lipoproteins with increasing ionic strength. However, the time-temperature superposition relationship observed in all samples suggests an identical mechanism underlying protein aggregation-gelation with a temperature-dependent reaction rate. The sol-gel transition time extracted from kinetic and dynamic information follows Arrhenius's behavior, and the activation energy (460 kJ/mol) is found to be independent of the salt concentration.

5.
Sci Adv ; 10(16): eadm7876, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640237

RESUMEN

Stimuli-responsive polymers are an important class of materials with many applications in nanotechnology and drug delivery. The most prominent one is poly-N-isopropylacrylamide (PNIPAm). The characterization of the kinetics of its change after a temperature jump is still a lively research topic, especially at nanometer-length scales where it is not possible to rely on conventional microscopic techniques. Here, we measured in real time the collapse of a PNIPAm shell on silica nanoparticles with megahertz x-ray photon correlation spectroscopy at the European XFEL. We characterize the changes of the particles diffusion constant as a function of time and consequently local temperature on sub-microsecond timescales. We developed a phenomenological model to describe the observed data and extract the characteristic times associated to the swelling and collapse processes. Different from previous studies tracking the turbidity of PNIPAm dispersions and using laser heating, we find collapse times below microsecond timescales and two to three orders of magnitude slower swelling times.

6.
Sci Rep ; 14(1): 17480, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080313

RESUMEN

We report on the feasibility of Fourier transform holography in the hard X-ray regime using a Free Electron Laser source. Our study shows successful single and multi-pulse holographic reconstructions of the nanostructures. We observe beam-induced heating of the sample exposed to the intense X-ray pulses leading to reduced visibility of the holographic reconstructions. Furthermore, we extended our study exploring the feasibility of recording holographic reconstructions with hard X-ray split-and-delay optics. Our study paves the way towards studying dynamics at sub-nanosecond timescales and atomic lengthscales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA