Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32444470

RESUMEN

Anaerobic degradation of polycyclic aromatic hydrocarbons has been investigated mostly with naphthalene as a model compound. Naphthalene degradation by sulfate-reducing bacteria proceeds via carboxylation to 2-naphthoic acid, formation of a coenzyme A thioester, and subsequent reduction to 5,6,7,8-tetrahydro-2-naphthoyl-coenzyme A (THNCoA), which is further reduced to hexahydro-2-naphthoyl-CoA (HHNCoA) by tetrahydronaphthoyl-CoA reductase (THNCoA reductase), an enzyme similar to class I benzoyl-CoA reductases. When analyzing THNCoA reductase assays with crude cell extracts and NADH as electron donor via liquid chromatography-mass spectrometry (LC-MS), scanning for putative metabolites, we found that small amounts of the product of an HHNCoA hydratase were formed in the assays, but the downstream conversion by an NAD+-dependent ß-hydroxyacyl-CoA dehydrogenase was prevented by the excess of NADH in those assays. Experiments with alternative electron donors indicated that 2-oxoglutarate can serve as an indirect electron donor for the THNCoA-reducing system via a 2-oxoglutarate:ferredoxin oxidoreductase. With 2-oxoglutarate as electron donor, THNCoA was completely converted and further metabolites resulting from subsequent ß-oxidation-like reactions and hydrolytic ring cleavage were detected. These metabolites indicate a downstream pathway with water addition to HHNCoA and ring fission via a hydrolase acting on a ß'-hydroxy-ß-oxo-decahydro-2-naphthoyl-CoA intermediate. Formation of the downstream intermediate cis-2-carboxycyclohexylacetyl-CoA, which is the substrate for the previously described lower degradation pathway leading to the central metabolism, completes the anaerobic degradation pathway of naphthalene.IMPORTANCE Anaerobic degradation of polycyclic aromatic hydrocarbons is poorly investigated despite its significance in anoxic sediments. Using alternative electron donors for the 5,6,7,8-tetrahydro-2-naphthoyl-CoA reductase reaction, we observed intermediary metabolites of anaerobic naphthalene degradation via in vitro enzyme assays with cell extracts of anaerobic naphthalene degraders. The identified metabolites provide evidence that ring reduction terminates at the stage of hexahydro-2-naphthoyl-CoA and a sequence of ß-oxidation-like degradation reactions starts with a hydratase acting on this intermediate. The final product of this reaction sequence was identified as cis-2-carboxycyclohexylacetyl-CoA, a compound for which a further downstream degradation pathway has recently been published (P. Weyrauch, A. V. Zaytsev, S. Stephan, L. Kocks, et al., Environ Microbiol 19:2819-2830, 2017, https://doi.org/10.1111/1462-2920.13806). Our study reveals the first ring-cleaving reaction in the anaerobic naphthalene degradation pathway. It closes the gap between the reduction of the first ring of 2-naphthoyl-CoA by 2-napthoyl-CoA reductase and the lower degradation pathway starting from cis-2-carboxycyclohexylacetyl-CoA, where the second ring cleavage takes place.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coenzima A/metabolismo , Deltaproteobacteria/enzimología , Naftalenos/metabolismo , Oxidorreductasas/metabolismo , Anaerobiosis , Oxidación-Reducción
2.
Environ Microbiol ; 20(10): 3589-3600, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30051563

RESUMEN

Anaerobic degradation processes are very important to attenuate polycyclic aromatic hydrocarbons (PAHs) in saturated, anoxic sediments. However, PAHs are poorly degradable, leading to very slow microbial growth and thus resulting in only a few cultures that have been enriched and studied so far. Here, we report on a new phenanthrene-degrading, sulfate-reducing enrichment culture, TRIP1. Genome-resolved metagenomics and strain specific cell counting with FISH and flow cytometry indicated that the culture is dominated by a microorganism belonging to the Desulfobacteraceae family (60% of the community) and sharing 93% 16S rRNA sequence similarity to the naphthalene-degrading, sulfate-reducing strain NaphS2. The anaerobic degradation pathway was studied by metabolite analyses and revealed phenanthroic acid as the major intermediate consistent with carboxylation as the initial activation reaction. Further reduced metabolites were indicative of a stepwise reduction of the ring system. We were able to measure the presumed second enzyme reaction in the pathway, phenanthroate-CoA ligase, in crude cell extracts. The reaction was specific for 2-phenanthroic acid and did not transform other isomers. The present study provides first insights into the anaerobic degradation pathways of three-ringed PAHs. The biochemical strategy follows principles known from anaerobic naphthalene degradation, including carboxylation and reduction of the aromatic ring system.


Asunto(s)
Deltaproteobacteria/metabolismo , Fenantrenos/metabolismo , Anaerobiosis , Biodegradación Ambiental , Deltaproteobacteria/clasificación , Deltaproteobacteria/genética , Redes y Vías Metabólicas , ARN Ribosómico 16S , Sulfatos/metabolismo
3.
Environ Microbiol ; 19(7): 2819-2830, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28574200

RESUMEN

The cyclohexane derivative cis-2-(carboxymethyl)cyclohexane-1-carboxylic acid [(1R,2R)-/(1S,2S)-2-(carboxymethyl)cyclohexane-1-carboxylic acid] has previously been identified as metabolite in the pathway of anaerobic degradation of naphthalene by sulfate-reducing bacteria. We tested the corresponding CoA esters of isomers and analogues of this compound for conversion in cell free extracts of the anaerobic naphthalene degraders Desulfobacterium strain N47 and Deltaproteobacterium strain NaphS2. Conversion was only observed for the cis-isomer, verifying that this is a true intermediate and not a dead-end product. Mass-spectrometric analyses confirmed that conversion is performed by an acyl-CoA dehydrogenase and a subsequent hydratase yielding an intermediate with a tertiary hydroxyl-group. We propose that a novel kind of ring-opening lyase is involved in the further catabolic pathway proceeding via pimeloyl-CoA. In contrast to degradation pathways of monocyclic aromatic compounds where ring-cleavage is achieved via hydratases, this lyase might represent a new ring-opening strategy for the degradation of polycyclic compounds. Conversion of the potential downstream metabolites pimeloyl-CoA and glutaryl-CoA was proved in cell free extracts, yielding 2,3-dehydropimeloyl-CoA, 3-hydroxypimeloyl-CoA, 3-oxopimeloyl-CoA, glutaconyl-CoA, crotonyl-CoA, 3-hydroxybutyryl-CoA and acetyl-CoA as observable intermediates. This indicates a link to central metabolism via ß-oxidation, a non-decarboxylating glutaryl-CoA dehydrogenase and a subsequent glutaconyl-CoA decarboxylase.


Asunto(s)
Acilcoenzima A/metabolismo , Deltaproteobacteria/metabolismo , Naftalenos/metabolismo , Acetilcoenzima A/biosíntesis , Acilcoenzima A/biosíntesis , Acil-CoA Deshidrogenasa/metabolismo , Anaerobiosis , Sistema Libre de Células/metabolismo , Liasas/metabolismo , Redes y Vías Metabólicas , Oxidación-Reducción
4.
Environ Sci Technol ; 48(10): 5501-11, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24708181

RESUMEN

Phenoxy acid herbicides are important groundwater contaminants. Stable isotope analysis and enantiomer analysis are well-recognized approaches for assessing in situ biodegradation in the field. In an aerobic degradation survey with six phenoxyacetic acid and three phenoxypropionic acid-degrading bacteria we measured (a) enantiomer-specific carbon isotope fractionation of MCPP ((R,S)-2-(4-chloro-2-methylphenoxy)-propionic acid), DCPP ((R,S)-2-(2,4-dichlorophenoxy)-propionic acid), and 4-CPP ((R,S)-2-(4-chlorophenoxy)-propionic acid); (b) compound-specific isotope fractionation of MCPA (4-chloro-2-methylphenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid); and (c) enantiomer fractionation of MCPP, DCPP, and 4-CPP. Insignificant or very slight (ε = -1.3‰ to -2.0‰) carbon isotope fractionation was observed. Equally small values in an RdpA enzyme assay (εea = -1.0 ± 0.1‰) and even smaller fractionation in whole cell experiments of the host organism Sphingobium herbicidovorans MH (εwc = -0.3 ± 0.1‰) suggest that (i) enzyme-associated isotope effects were already small, yet (ii) further masked by active transport through the cell membrane. In contrast, enantiomer fractionation in MCPP, DCPP, and 4-CPP was pronounced, with enantioselectivities (ES) of -0.65 to -0.98 with Sphingomonas sp. PM2, -0.63 to -0.89 with Sphingobium herbicidovorans MH, and 0.74 to 0.97 with Delftia acidovorans MC1. To detect aerobic biodegradation of phenoxypropionic acids in the field, enantiomer fractionation seems, therefore, a stronger indicator than carbon isotope fractionation.


Asunto(s)
Bacterias/metabolismo , Fenoxiacetatos/aislamiento & purificación , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/aislamiento & purificación , Aerobiosis , Bacterias/enzimología , Biodegradación Ambiental , Isótopos de Carbono/análisis , Fraccionamiento Químico , Pruebas de Enzimas , Herbicidas/química , Herbicidas/aislamiento & purificación , Fenoxiacetatos/química , Estereoisomerismo
5.
Appl Microbiol Biotechnol ; 93(4): 1553-61, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21892598

RESUMEN

Nitrilases from Aspergillus niger CBS 513.88, A. niger K10, Gibberella moniliformis, Neurospora crassa OR74A, and Penicillium marneffei ATCC 18224 were expressed in Escherichia coli BL21-Gold (DE3) after IPTG induction. N. crassa nitrilase exhibited the highest yield of 69,000 U L(-1) culture. Co-expression of chaperones (GroEL/ES in G. moniliformis and P. marneffei; GroEL/ES and trigger factor in N. crassa and A. niger CBS 513.88) enhanced the enzyme solubility. Specific activities of strains expressing the former two enzymes increased approximately fourfold upon co-expression of GroEL/ES. The enzyme from G. moniliformis (co-purified with GroEL) preferred benzonitrile as substrate (K(m) of 0.41 mM, V(max) of 9.7 µmol min(-1) mg(-1) protein). The P. marneffei enzyme (unstable in its purified state) exhibited the highest V(max) of 7.3 µmol min(-1) mg(-1) protein in cell-free extract, but also a high K(m) of 15.4 mM, for 4-cyanopyridine. The purified nitrilases from A. niger CBS 513.88 and N. crassa acted preferentially on phenylacetonitrile (K(m) of 3.4 and 2.0 mM, respectively; V(max) of 10.6 and 17.5 µmol min(-1) mg(-1) protein, respectively), and hydrolyzed also (R,S)-mandelonitrile with higher K(m) values. Significant amounts of amides were only formed by the G. moniliformis nitrilase from phenylacetonitrile and 4-cyanopyridine.


Asunto(s)
Aminohidrolasas/aislamiento & purificación , Aminohidrolasas/metabolismo , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Hongos/enzimología , Aminohidrolasas/química , Aminohidrolasas/genética , Clonación Molecular , Estabilidad de Enzimas , Escherichia coli/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hongos/genética , Expresión Génica , Concentración de Iones de Hidrógeno , Cinética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Temperatura
6.
J Mol Microbiol Biotechnol ; 26(1-3): 92-118, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26960214

RESUMEN

Aromatic hydrocarbons such as benzene and polycyclic aromatic hydrocarbons (PAHs) are very slowly degraded without molecular oxygen. Here, we review the recent advances in the elucidation of the first known degradation pathways of these environmental hazards. Anaerobic degradation of benzene and PAHs has been successfully documented in the environment by metabolite analysis, compound-specific isotope analysis and microcosm studies. Subsequently, also enrichments and pure cultures were obtained that anaerobically degrade benzene, naphthalene or methylnaphthalene, and even phenanthrene, the largest PAH currently known to be degradable under anoxic conditions. Although such cultures grow very slowly, with doubling times of around 2 weeks, and produce only very little biomass in batch cultures, successful proteogenomic, transcriptomic and biochemical studies revealed novel degradation pathways with exciting biochemical reactions such as for example the carboxylation of naphthalene or the ATP-independent reduction of naphthoyl-coenzyme A. The elucidation of the first anaerobic degradation pathways of naphthalene and methylnaphthalene at the genetic and biochemical level now opens the door to studying the anaerobic metabolism and ecology of anaerobic PAH degraders. This will contribute to assessing the fate of one of the most important contaminant classes in anoxic sediments and aquifers.


Asunto(s)
Benceno/metabolismo , Biodegradación Ambiental , Hidrocarburos Policíclicos Aromáticos/metabolismo , Anaerobiosis , Bacterias Anaerobias/enzimología , Bacterias Anaerobias/genética , Bacterias Anaerobias/metabolismo , Técnicas de Cultivo Celular por Lotes , Benceno/química , Redes y Vías Metabólicas , Hidrocarburos Policíclicos Aromáticos/química
7.
Water Res ; 44(15): 4451-62, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20599243

RESUMEN

The present study examines the contribution of combined sewer overflows (CSO) to loads and concentrations of trace contaminants in receiving surface water. A simple method to assess the ratio of CSO to wastewater treatment plant (WWTP) effluents was applied to the urban River Spree in Berlin, Germany. The assessment indicated that annual loads are dominated by CSO for substances with removal in WWTP above approximately 95%. Moreover, it showed that substances with high removal in WWTP can lead to concentration peaks in the river during CSO events. The calculated results could be verified based on eight years of monitoring data from the River Spree, collected between 2000 and 2007. Substances that are well removed in WWTP such as NTA (nitrilotriacetic acid) were found to occur in significantly increased concentration during CSO, while the concentration of substances that are poorly removable in WWTP such as EDTA (ethylenediaminetetraacetic acid) decreased in CSO-influenced samples due to dilution effects. The overall results indicate the potential importance of the CSO pathway of well-removable sewage-based trace contaminants to rivers. In particular, high concentrations during CSO events may be relevant for aquatic organisms. Given the results, it is suggested to include well-removable, sewage-based trace contaminants, a substance group often neglected in the past, in future studies on urban rivers in case of combined sewer systems. The presented methodology is suggested for a first assessment, since it is based solely on urban drainage data, which is available in most cities.


Asunto(s)
Ríos/química , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Berlin , Ciudades , Monitoreo del Ambiente/métodos , Geografía , Ácido Nitrilotriacético/aislamiento & purificación , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA