Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 63(29): 13576-13584, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38981128

RESUMEN

With increasing battery demand comes a need for diversified Li sources beyond brines. Among all Li-bearing minerals, spodumene is most often used for its high Li content and natural abundance. However, the traditional approach to process spodumene is costly and energy-intensive, requiring the mineral be transformed from its natural α to ß phase at >1000 °C. Acid leaching is then applied, followed by neutralization to precipitate Li2CO3. In this work, we report an alternative method to extract Li directly from α-spodumene, which is performed at lower temperatures and avoids the use of acids. It is shown that Li2CO3 is formed with >90% yield at 750 °C by reacting α-spodumene with Na2CO3 and Al2O3. The addition of Al2O3 is critical to reduce the amount of Li2SiO3 that forms when only Na2CO3 is used, instead providing increased thermodynamic driving force to form NaAlSiO4 and Li2CO3 as the sole products. We find that this reaction is most effective at 4 h, after which volatility limits the yield. Following its extraction, Li2CO3 can be isolated by washing the sample using deionized water. This energy-saving and acid-free route to obtain Li2CO3 directly from spodumene can help meet the growing demand for Li.

2.
Biomacromolecules ; 24(1): 387-399, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36469858

RESUMEN

Herein, we report a platform to integrate customizable quantities of catechol units into polymers by reacting caffeic acid carbonic anhydride with polymers having pendant amine groups. Brush poly(ethylene glycol)-caffeamide (PEG-CAF) copolymers based on oligo(ethylene glycol)methyl ether methacrylate (OEGMA500) were obtained with a catechol content of approximately 30, 40, and 50 mol % (vs OEGMA content). Owing to the hydrophobicity of the introduced CAF groups, the catechol copolymers exhibited cloud points in the range of 23-46 °C and were used to fabricate thermoresponsive FeIII metal-phenolic network capsules. Polymers with the highest CAF content (50 mol %) proved most effective for attenuating reactive oxygen species levels in vitro, in co-cultured fibroblasts, and breast cancer cells, even in the presence of an exogenous oxidant source. The reported approach to synthesize customizable catechol materials could be generalized to other amine-functional polymers, with potential biomedical applications such as adhesives or stimuli-responsive drug delivery systems.


Asunto(s)
Polietilenglicoles , Polímeros , Polímeros/farmacología , Compuestos Férricos , Catecoles , Estrés Oxidativo
3.
FASEB J ; 35(6): e21639, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34041782

RESUMEN

During the emission phase of ejaculation, the sperm is driven from the cauda epididymidis, where it is stored, through the vas deferens by strong contractions. These contractions are thought of as being mainly induced by the sympathetic nervous system and the neurotransmitter noradrenaline. In the present study, we investigated the effect of oxytocin (suggested to exert effects during ejaculation as well) on defined segments of the rat and human epididymis using live imaging. Our results indicate that it is the very last part of the epididymis, segment 19 (S19) in rat and likewise segment 9 in human, which responds in a uniquely strong and rapid manner to oxytocin (similar to noradrenaline). Because of the complex nature of this contractile response, we developed an imaging analysis method, which allowed us to quantify multidirectional contractions and to display them using heat maps. The reaction of S19 to oxytocin was concentration-dependent and could be inhibited by pretreatment with oxytocin antagonists (atosiban and cligosiban), but not with an arginine vasopressin 1A antagonist (SR49059). In both rat and human tissue, pretreatment with the alpha-1 adrenoreceptor antagonist tamsulosin inhibited the response to noradrenaline, whereas the effect of oxytocin was unimpaired. Our data (from men and rodents) strongly suggest that the hormone oxytocin is involved in the ejaculatory process. Thus, oxytocin-based medications might be a promising non-adrenergic treatment option for ejaculatory disorders. Additionally, we propose that S19 could be an advantageous model (detecting very low concentrations of oxytocin) to test the bioactivity of new oxytocin agonists and oxytocin antagonists.


Asunto(s)
Eyaculación , Epidídimo/fisiología , Contracción Muscular , Oxitocina/farmacología , Receptores de Oxitocina/antagonistas & inhibidores , Receptores de Vasopresinas/química , Animales , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Epidídimo/efectos de los fármacos , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Ratas Wistar
4.
Faraday Discuss ; 235(0): 416-432, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35388385

RESUMEN

Balcite (BaxCa1-xCO3) is a synthetic analog of rhombohedral carbonate minerals like calcite and dolomite that is disordered on both the cation and anion sublattices. Here, we show that multiple exotic superlattice structures, including a dolomite analog that we call balcomite, can form from balcite at elevated temperatures. The second-order balcite-to-balcomite conversion at temperatures between 150-600 °C is driven by the preference of barium and calcium for different oxygen coordination numbers and facilitated by local carbonate reorientation. At elevated pressure, further superlattice order arises from cation segregation in all three dimensions, producing a supercell with the same R3̄m symmetry as balcite but 6× larger. This highly ordered structure relaxes back to the balcomite structure upon returning to ambient conditions. None of the three naturally occurring polymorphs of Ba0.5Ca0.5CO3 (alstonite, paralstonite, barytocalcite) formed from balcite despite being putatively energetically favored. Instead, alstonite transformed to a balcomite-like structure via a first-order process after transiently converting to a paralstonite-like structure via a second-order process. Together, these results show that high temperature transformation pathways between structures in the barium calcium carbonate system can be driven by coarsening and are facilitated by similarity in short-range order, conceptually analogous to previously described low-temperature transformations. Many of the exotic high temperature carbonate structures are unstable, but may participate in transformation pathways between naturally observed metastable mineral phases, suggesting important roles for ephemeral phases in shaping past and current mineral distributions.

5.
Proc Natl Acad Sci U S A ; 116(44): 22052-22057, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31619569

RESUMEN

Ion exchange in nanoporous clay-rich media plays an integral role in water, nutrient, and contaminant storage and transport. In montmorillonite (MMT), a common clay mineral in soils, sediments, and muds, the swelling and collapse of clay particles through the addition or removal of discrete molecular layers of water alters cation exchange selectivities in a poorly understood way. Here, we show that ion exchange is coupled to the dynamic delamination and restacking of clay layers, which creates a feedback between the hydration state of the exchanging cation and the composition of the clay interlayer. Particles with different hydration states are distinct phases with unique binding selectivities. Surprisingly, equilibrium achieved through thermal fluctuations in cation concentration and hydration state leads to the exchange of both ions and individual MMT layers between particles, a process we image directly with high-resolution transmission electron microscopy at cryogenic conditions (cryo-TEM). We introduce an exchange model that accounts for the binding selectivities of different phases, which is likely applicable to many charged colloidal or macromolecular systems in which the structural conformation is correlated with the activities of water and counterions within spatially confined compartments.

6.
Biomacromolecules ; 21(12): 5292-5305, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33210534

RESUMEN

A potential approach to combat cellular dysfunction is to manipulate cell communication and signaling pathways to restore physiological functions while protecting unaffected cells. For instance, delivering the signaling molecule H2S to certain cells has been shown to restore cell viability and re-normalize cell behavior. We have previously demonstrated the ability to incorporate a trisulfide-based H2S-donating moiety into linear polymers with good in vitro releasing profiles and demonstrated their potential for ameliorating oxidative stress. Herein, we report two novel series of brush polymers decorated with higher numbers of H2S-releasing segments. These materials contain two trisulfide-based monomers co-polymerized with oligo(ethylene glycol methyl ether methacrylate) via reversible addition-fragmentation chain-transfer polymerization. The macromolecules were characterized to have a range of trisulfide densities with similar, well-defined molecular weight distribution, good H2S-releasing profiles, and high cellular tolerance. Using an amperometric technique, the H2S liberated and total sulfide release were found to depend on concentrations and chemical nature of triggering molecules (glutathione and cysteine) and, importantly, the position of reactive groups within the brush structure. Notably, when introduced to cells at well-tolerated doses, two macromolecular donors which have the same proportion as of the H2S-donating monomer (30%) but differ in releasing moiety location show similar cellular H2S-releasing kinetics. These donors can restore reactive oxygen species levels to baseline values, when polymer pretreated cells are exposed to exogenous oxidants (H2O2). Our work opens up a new aspect in preparing H2S macromolecule donors and their application to arresting cellular oxidative cascades.


Asunto(s)
Sulfuro de Hidrógeno , Peróxido de Hidrógeno , Estrés Oxidativo , Polímeros , Sulfuros
7.
Macromol Rapid Commun ; 41(11): e2000061, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32250004

RESUMEN

To improve the signal-to-noise ratio of hypoxia positron emission tomography (PET) imaging, stimuli-responsive polymers are designed for the delivery of the hypoxia PET tracer fluorine-18 labeled fluoromisonidazole ([18 F]FMISO). Linear poly(N-(2-(hydroxypropyl)methacrylamide)) polymers are functionalized with hydrazide linkers that form pH-sensitive acyl hydrazone bonds after their conjugation to an [18 F]FMISO ketone analogue. The release of the [18 F]FMISO ketone analogue from the polymers is considerably faster at a lower pH and its uptake is significantly higher in cancer cells growing under acidic conditions. Additionally, the retention of the PET tracer is significantly higher in hypoxic cells compared to normoxic cells. The delivery of a PET tracer using stimuli-responsive polymers may be an attractive strategy to improve signal-to-noise ratios in PET imaging.


Asunto(s)
Hipoxia , Misonidazol/análogos & derivados , Tomografía de Emisión de Positrones , Radioisótopos de Flúor , Humanos , Concentración de Iones de Hidrógeno , Misonidazol/química , Estructura Molecular , Relación Señal-Ruido
8.
Nanomedicine ; 30: 102291, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32841737

RESUMEN

Polylactide-co-glycolide (PLGA) nanoparticles are one of the most commonly explored biodegradable polymeric drug carriers for inhaled delivery. Despite their advantages as inhalable nanomedicine scaffolds, we still lack a complete understanding of the kinetics and major pathways by which these materials are cleared from the lungs. This information is important to evaluate their safety over prolonged use and enable successful clinical translation. This study aimed to determine how the size and charge of 3H-labeled PLGA nanoparticles affect the kinetics and mechanisms by which they are cleared from the lungs and their safety in the lungs. The results showed that lung clearance kinetics and retention patterns were more significantly defined by particle size, whereas lung clearance pathways were largely influenced by particle charge. Each of the nanoparticles caused transient inflammatory changes in the lungs after a single dose that reflected lung retention times.


Asunto(s)
Pulmón/metabolismo , Nanopartículas/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/administración & dosificación , Animales , Líquido del Lavado Bronquioalveolar , Vías de Administración de Medicamentos , Pulmón/inmunología , Masculino , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/sangre , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacocinética , Ratas , Ratas Sprague-Dawley , Distribución Tisular , Tráquea
9.
Macromol Rapid Commun ; 40(2): e1800438, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30091816

RESUMEN

Rapid developments in the polymerization-induced self-assembly (PISA) technique have paved the way for the environmentally friendly production of nanoparticles with tunable size and shape for a diverse range of applications. In this feature article, the biomedical applications of PISA nanoparticles and the substantial progress made in controlling their size and shape are highlighted. In addition to early investigations into drug delivery, applications such as medical imaging, tissue culture, and blood cryopreservation are also described. Various parameters for controlling the morphology of PISA nanoparticles are discussed, including the degree of polymerization of the macro-CTA and core-forming polymers, the concentration of macro-CTA and core-forming monomers, the solid content of the final products, the solution pH, the thermoresponsitivity of the macro-CTA, the macro-CTA end group, and the initiator concentration. Finally, several limitations and challenges for the PISA technique that have been recently addressed, along with those that will require further efforts into the future, will be highlighted.


Asunto(s)
Técnicas de Química Sintética/métodos , Diagnóstico por Imagen/métodos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Nanoestructuras/química , Polimerizacion , Dispersión Dinámica de Luz , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Polímeros/síntesis química , Polímeros/química
10.
Small ; 14(34): e1801702, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30043521

RESUMEN

The size and surface chemistry of nanoparticles dictate their interactions with biological systems. However, it remains unclear how these key physicochemical properties affect the cellular association of nanoparticles under dynamic flow conditions encountered in human vascular networks. Here, the facile synthesis of novel fluorescent nanoparticles with tunable sizes and surface chemistries and their association with primary human umbilical vein endothelial cells (HUVECs) is reported. First, a one-pot polymerization-induced self-assembly (PISA) methodology is developed to covalently incorporate a commercially available fluorescent dye into the nanoparticle core and tune nanoparticle size and surface chemistry. To characterize cellular association under flow, HUVECs are cultured onto the surface of a synthetic microvascular network embedded in a microfluidic device (SynVivo, INC). Interestingly, increasing the size of carboxylic acid-functionalized nanoparticles leads to higher cellular association under static conditions but lower cellular association under flow conditions, whereas increasing the size of tertiary amine-decorated nanoparticles results in a higher level of cellular association, under both static and flow conditions. These findings provide new insights into the interactions between polymeric nanomaterials and endothelial cells. Altogether, this work establishes innovative methods for the facile synthesis and biological characterization of polymeric nanomaterials for various potential applications.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/citología , Nanopartículas/química , Tamaño de la Partícula , Polimerizacion , Reología , Ácidos Carboxílicos/química , Colorantes Fluorescentes/química , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Microfluídica , Microvasos/efectos de los fármacos , Nanopartículas/toxicidad , Nanopartículas/ultraestructura , Propiedades de Superficie , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA