Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Eur J Neurosci ; 60(1): 3643-3658, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38698531

RESUMEN

The pedunculopontine tegmental nucleus of the brainstem (PPTg) has extensive interconnections and neuronal-behavioural correlates. It is implicated in movement control and sensorimotor integration. We investigated whether single neuron activity in freely moving rats is correlated with components of skilled forelimb movement, and whether individual neurons respond to both motor and sensory events. We found that individual PPTg neurons showed changes in firing rate at different times during the reach. This type of temporally specific modulation is like activity seen elsewhere in voluntary movement control circuits, such as the motor cortex, and suggests that PPTg neural activity is related to different specific events occurring during the reach. In particular, many neuronal modulations were time-locked to the end of the extension phase of the reach, when fine distal movements related to food grasping occur, indicating strong engagement of PPTg in this phase of skilled individual forelimb movements. In addition, some neurons showed brief periods of apparent oscillatory firing in the theta range at specific phases of the reach-to-grasp movement. When movement-related neurons were tested with tone stimuli, many also responded to this auditory input, allowing for sensorimotor integration at the cellular level. Together, these data extend the concept of the PPTg as an integrative structure in generation of complex movements, by showing that this function extends to the highly coordinated control of the forelimb during skilled reach to grasp movement, and that sensory and motor-related information converges on single neurons, allowing for direct integration at the cellular level.


Asunto(s)
Neuronas , Núcleo Tegmental Pedunculopontino , Ritmo Teta , Animales , Núcleo Tegmental Pedunculopontino/fisiología , Neuronas/fisiología , Ratas , Masculino , Ritmo Teta/fisiología , Movimiento/fisiología , Miembro Anterior/fisiología , Ratas Long-Evans , Potenciales de Acción/fisiología , Estimulación Acústica/métodos
2.
Eur J Neurosci ; 59(7): 1567-1584, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38314648

RESUMEN

The spontaneously hypertensive rat (SHR) is a selectively bred animal strain that is frequently used to model attention-deficit hyperactivity disorder (ADHD) because of certain genetically determined behavioural characteristics. To test the hypothesis that the characteristically altered response to positive reinforcement in SHRs may be due to altered phasic dopamine response to reward, we measured phasic dopamine signals in the SHRs and Sprague Dawley (SD) rats using in vivo fast-scan cyclic voltammetry. The effects of the dopamine reuptake inhibitor, methylphenidate, on these signals were also studied. Phasic dopamine signals during the pairing of a sensory cue with electrical stimulation of midbrain dopamine neurons were significantly smaller in the SHRs than in the SD rats. Over repeated pairings, the dopamine response to the sensory cue increased, whereas the response to the electrical stimulation of dopamine neurons decreased, similarly in both strains. However, the final amplitude of the response to the sensory cue after pairing was significantly smaller in SHRs than in the SD rats. Methylphenidate increased responses to sensory cues to a significantly greater extent in the SHRs than in the SD rats, due largely to differences in the low dose effect. At a higher dose, methylphenidate increased responses to sensory cues and electrical stimulation similarly in SHRs and SD rats. The smaller dopamine responses may explain the reduced salience of reward-predicting cues previously reported in the SHR, whereas the action of methylphenidate on the cue response suggests a potential mechanism for the therapeutic effects of low-dose methylphenidate in ADHD.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Metilfenidato , Ratas , Animales , Metilfenidato/farmacología , Metilfenidato/uso terapéutico , Ratas Endogámicas SHR , Dopamina , Ratas Endogámicas WKY , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Estimulantes del Sistema Nervioso Central/farmacología
3.
J Neurosci ; 41(37): 7831-7847, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34348999

RESUMEN

The principal neurons of the striatum, the spiny projection neurons (SPNs), make inhibitory synaptic connections with each other via collaterals of their main axon, forming a local lateral inhibition network. Serotonin, acting via the 5-HT1B receptor, modulates neurotransmitter release from SPN terminals in striatal output nuclei, but the role of 5-HT1B receptors in lateral inhibition among SPNs in the striatum is unknown. Here, we report the effects of 5-HT1B receptor activation on lateral inhibition in the mouse striatum. Whole-cell recordings were made from SPNs in acute brain slices of either sex, while optogenetically activating presynaptic SPNs or fast-spiking interneurons (FSIs). Activation of 5-HT1B receptors significantly reduced the amplitude of IPSCs evoked by optical stimulation of both direct and indirect pathway SPNs. This reduction was blocked by application of a 5-HT1B receptor antagonist. Activation of 5-HT1B receptors did not reduce the amplitude of IPSCs evoked from FSIs. These results suggest a new role for serotonin as a modulator of lateral inhibition among striatal SPNs. The 5-HT1B receptor may, therefore, be a suitable target for future behavioral experiments investigating the currently unknown role of lateral inhibition in the function of the striatum.SIGNIFICANCE STATEMENT We show that stimulation of serotonin receptors reduces the efficacy of lateral inhibition between spiny projection neurons (SPNs), one of the biggest GABAergic sources in the striatum, by activation of the serotonin 5-HT1B receptor. The striatum receives serotonergic input from the dorsal raphe nuclei and is important in behavioral brain functions like learning and action selection. Our findings suggest a new role for serotonin in modulating the dynamics of neural interactions in the striatum, which extends current knowledge of the mechanisms of the behavioral effects of serotonin.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptor de Serotonina 5-HT1B/metabolismo , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Cuerpo Estriado/metabolismo , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Ratones , Neuronas/metabolismo , Técnicas de Placa-Clamp , Serotonina/metabolismo , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
4.
Molecules ; 27(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35208986

RESUMEN

The cholinergic interneurons of the striatum account for a small fraction of all striatal cell types but due to their extensive axonal arborization give the striatum the highest content of acetylcholine of almost any nucleus in the brain. The prevailing theory of striatal cholinergic interneuron signaling is that the numerous varicosities on the axon produce an extrasynaptic, volume-transmitted signal rather than mediating rapid point-to-point synaptic transmission. We review the evidence for this theory and use a mathematical model to integrate the measurements reported in the literature, from which we estimate the temporospatial distribution of acetylcholine after release from a synaptic vesicle and from multiple vesicles during tonic firing and pauses. Our calculations, together with recent data from genetically encoded sensors, indicate that the temporospatial distribution of acetylcholine is both short-range and short-lived, and dominated by diffusion. These considerations suggest that acetylcholine signaling by cholinergic interneurons is consistent with point-to-point transmission within a steep concentration gradient, marked by transient peaks of acetylcholine concentration adjacent to release sites, with potential for faithful transmission of spike timing, both bursts and pauses, to the postsynaptic cell. Release from multiple sites at greater distance contributes to the ambient concentration without interference with the short-range signaling. We indicate several missing pieces of evidence that are needed for a better understanding of the nature of synaptic transmission by the cholinergic interneurons of the striatum.


Asunto(s)
Acetilcolina/metabolismo , Cuerpo Estriado/metabolismo , Interneuronas/metabolismo , Transmisión Sináptica , Animales , Humanos
5.
Eur J Neurosci ; 53(7): 2165-2177, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32090382

RESUMEN

Medium spiny neurons (MSN) are the primary output neurons of the striatum. Their activity is modulated by exogenous afferents and local circuit inputs, including fast-spiking interneurons (FSI). Altered responses of MSN and FSI may account for altered reward-driven behaviour in hyperactive rat strains, such as the genetically hypertensive (GH) rat. To investigate whether striatal neuron responses differ between GH and Wistar rats, we recorded putative MSNs (pMSN) and FSI (pFSI) from freely moving GH and Wistar rats in a classically conditioned (Pavlovian) cue-reward association paradigm. Here, the same auditory cue signal predicted reward delivery in one block of trials, but was not followed by reward in another. The significance of the cue as a reward predictor was indicated during each block by an environmental context provided by the house light. The results showed that pMSN in GH rats, but not Wistar rats, were more sensitive to the auditory signal in the context indicating no-reward, than in the reward context. Such enhanced sensitivity to cues in a no-reward context may contribute to a specific deficit in instrumental behaviour seen in GH rats, which maintain higher levels of instrumental responding in a context that indicates responding will not be rewarded. In addition, pFSI also responded to auditory signals, but there was no significant effect of reward context. Surprisingly, given their known feed-forward role, pFSI responded at longer latency than pMSN, suggesting that relative timing of activity in the two populations may be task specific.


Asunto(s)
Interneuronas , Neuronas , Potenciales de Acción , Animales , Cuerpo Estriado , Ratas , Ratas Wistar , Recompensa
6.
Eur J Neurosci ; 52(3): 3087-3109, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32250479

RESUMEN

The discovery of Kamin blocking led to the idea that associative learning occurs only when there is a mismatch between actual and predicted outcomes, or prediction error. The neural substrates involved in regulating this prediction error during behavioral learning are still not fully elucidated. We investigated in rats the role of the ventral tegmental area and the nucleus accumbens in Kamin blocking. Our blocking paradigm involved three phases: appetitive classical conditioning of a lever cue, conditioning of a compound of the lever cue plus an auditory cue, and testing response to the auditory cue in extinction. We found that disruption of inhibition in the ventral tegmental area by bicuculline, or designer receptor mediated inactivation of the nucleus accumbens, during compound cue conditioning, attenuated Kamin blocking. These results suggest that inhibition in the ventral tegmental area and inhibitory output from the nucleus accumbens are necessary for blocking and make behaviorally significant contributions to the computation of reward prediction error. In addition, we found that inactivating the neurons in the nucleus accumbens during classical conditioning of the lever cue also attenuated blocking, without affecting classical conditioning of the lever. This indicates that learning in the nucleus accumbens is necessary for blocking and reward estimation. Our results reveal a causal role for nucleus accumbens modulated inhibitory inputs to the ventral tegmental area in the blocking effect and suggest that they contribute to computation of reward prediction error during associative learning.


Asunto(s)
Núcleo Accumbens , Área Tegmental Ventral , Animales , Condicionamiento Clásico , Aprendizaje , Ratas , Recompensa
7.
Eur J Neurosci ; 47(10): 1194-1205, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29359362

RESUMEN

Behavioural flexibility is crucial for adaptive behaviour, and recent evidence suggests that cholinergic interneurons of the striatum play a distinct role. Previous studies of cholinergic function have focused on strategy switching by the dorsomedial or ventral striatum. We here investigated whether cholinergic interneurons in the dorsolateral striatum play a similar role at the level of switching of habitual responses. Because the dorsolateral striatum is particularly involved in habitual responding, we developed a habit substitution task that involved switching habitual lever-press responses to one side to another. We first measured the effect of cholinergic activation in the dorsolateral striatum on this task. Chemogenetic activation of cholinergic interneurons caused an increase in the response rate for the substituted response that was significantly greater than the increase normally seen in control animals. The increase was due to burst-like responses with shorter inter-press intervals. However, there was no effect on inhibiting the old habit, or on habitual responding that did not require a switch. There was also no effect on lever-press performance and its reversal before lever-press responses became habitual. Conversely, neurochemically specific ablation of cholinergic interneurons did not significantly change habitual responding or response substitution. Thus, activation -but not ablation -of cholinergic interneurons in the dorsolateral striatum modulates expression of a new habit when an old habit is replaced by a new one. Together with previous work, this suggests that striatal cholinergic interneurons facilitate behavioural flexibility in both dorsolateral striatum in addition to dorsomedial and ventral striatum.


Asunto(s)
Conducta Animal/fisiología , Neuronas Colinérgicas/fisiología , Hábitos , Interneuronas/fisiología , Aprendizaje/fisiología , Neostriado/fisiología , Desempeño Psicomotor/fisiología , Animales , Ratas , Ratas Long-Evans , Ratas Transgénicas
8.
J Neurosci ; 35(25): 9424-31, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26109665

RESUMEN

The ability to change strategies in different contexts is a form of behavioral flexibility that is crucial for adaptive behavior. The striatum has been shown to contribute to certain forms of behavioral flexibility such as reversal learning. Here we report on the contribution of striatal cholinergic interneurons-a key element in the striatal neuronal circuit-to strategy set-shifting in which an attentional shift from one stimulus dimension to another is required. We made lesions of rat cholinergic interneurons in dorsomedial or ventral striatum using a specific immunotoxin and investigated the effects on set-shifting paradigms and on reversal learning. In shifting to a set that required attention to a previously irrelevant cue, lesions of dorsomedial striatum significantly increased the number of perseverative errors. In this condition, the number of never-reinforced errors was significantly decreased in both types of lesions. When shifting to a set that required attention to a novel cue, rats with ventral striatum lesions made more perseverative errors. Neither lesion impaired learning of the initial response strategy nor a subsequent switch to a new strategy when response choice was indicated by a previously relevant cue. Reversal learning was not affected. These results suggest that in set-shifting the striatal cholinergic interneurons play a fundamental role, which is dissociable between dorsomedial and ventral striatum depending on behavioral context. We propose a common mechanism in which cholinergic interneurons inhibit neurons representing the old strategy and enhance plasticity underlying exploration of a new rule.


Asunto(s)
Neuronas Colinérgicas/fisiología , Cuerpo Estriado/fisiología , Interneuronas/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Animales , Atención/fisiología , Señales (Psicología) , Masculino , Ratas , Ratas Long-Evans
9.
Learn Mem ; 21(4): 223-31, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24639489

RESUMEN

Behavioral flexibility is vital for survival in an environment of changing contingencies. The nucleus accumbens may play an important role in behavioral flexibility, representing learned stimulus-reward associations in neural activity during response selection and learning from results. To investigate the role of nucleus accumbens neural activity in behavioral flexibility, we used light-activated halorhodopsin to inhibit nucleus accumbens shell neurons during specific time segments of a bar-pressing task requiring a win-stay/lose-shift strategy. We found that optogenetic inhibition during action selection in the time segment preceding a lever press had no effect on performance. However, inhibition occurring in the time segment during feedback of results--whether rewards or nonrewards--reduced the errors that occurred after a change in contingency. Our results demonstrate critical time segments during which nucleus accumbens shell neurons integrate feedback into subsequent responses. Inhibiting nucleus accumbens shell neurons in these time segments, during reinforced performance or after a change in contingencies, increases lose-shift behavior. We propose that the activity of nucleus shell accumbens shell neurons in these time segments plays a key role in integrating knowledge of results into subsequent behavior, as well as in modulating lose-shift behavior when contingencies change.


Asunto(s)
Toma de Decisiones/fisiología , Función Ejecutiva/fisiología , Neuronas/fisiología , Núcleo Accumbens/fisiología , Desempeño Psicomotor/fisiología , Animales , Retroalimentación Fisiológica/fisiología , Retroalimentación Psicológica/fisiología , Vectores Genéticos , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Potenciales de la Membrana/fisiología , Motivación/fisiología , Actividad Motora/fisiología , Inhibición Neural , Pruebas Neuropsicológicas , Optogenética , Ratas , Ratas Long-Evans , Aprendizaje Inverso/fisiología , Recompensa , Factores de Tiempo
10.
PLoS Comput Biol ; 9(4): e1002954, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23592954

RESUMEN

Slowly varying activity in the striatum, the main Basal Ganglia input structure, is important for the learning and execution of movement sequences. Striatal medium spiny neurons (MSNs) form cell assemblies whose population firing rates vary coherently on slow behaviourally relevant timescales. It has been shown that such activity emerges in a model of a local MSN network but only at realistic connectivities of 10 ~ 20% and only when MSN generated inhibitory post-synaptic potentials (IPSPs) are realistically sized. Here we suggest a reason for this. We investigate how MSN network generated population activity interacts with temporally varying cortical driving activity, as would occur in a behavioural task. We find that at unrealistically high connectivity a stable winners-take-all type regime is found where network activity separates into fixed stimulus dependent regularly firing and quiescent components. In this regime only a small number of population firing rate components interact with cortical stimulus variations. Around 15% connectivity a transition to a more dynamically active regime occurs where all cells constantly switch between activity and quiescence. In this low connectivity regime, MSN population components wander randomly and here too are independent of variations in cortical driving. Only in the transition regime do weak changes in cortical driving interact with many population components so that sequential cell assemblies are reproducibly activated for many hundreds of milliseconds after stimulus onset and peri-stimulus time histograms display strong stimulus and temporal specificity. We show that, remarkably, this activity is maximized at striatally realistic connectivities and IPSP sizes. Thus, we suggest the local MSN network has optimal characteristics - it is neither too stable to respond in a dynamically complex temporally extended way to cortical variations, nor is it too unstable to respond in a consistent repeatable way. Rather, it is optimized to generate stimulus dependent activity patterns for long periods after variations in cortical excitation.


Asunto(s)
Cuerpo Estriado/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Potenciales de Acción/fisiología , Algoritmos , Animales , Ganglios Basales/patología , Biología Computacional/métodos , Simulación por Computador , Humanos , Potenciales Postsinápticos Inhibidores , Modelos Neurológicos , Inhibición Neural/fisiología , Densidad Postsináptica/metabolismo , Reproducibilidad de los Resultados , Programas Informáticos , Transmisión Sináptica/fisiología
11.
Behav Brain Res ; 443: 114348, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36796486

RESUMEN

Individual differences in reward-related learning are relevant to many behavioral disorders. Sensory cues that predict reward can become incentive stimuli that adaptively support behavior, or alternatively, cause maladaptive behaviors. The spontaneously hypertensive rat (SHR) expresses a genetically determined elevated sensitivity to delay of reward, and has been extensively studied as a behavioral model for attention deficit hyperactivity disorder (ADHD). We investigated reward-related learning in the SHR, comparing them to Sprague-Dawley (SD) rats as a reference strain. A standard Pavlovian conditioned approach task was used, in which a lever cue was followed by reward. Lever presses could occur while the lever was extended, but had no effect on reward delivery. The behavior of both the SHRs and the SD rats showed that they learnt that the lever cue predicted reward. However, the pattern of behavior differed between the strains. During lever cue presentation, SD rats pressed the lever more often and made fewer magazine entries than SHRs. When lever contacts that did not result in lever presses were analyzed, there was no significant difference between SHRs and SDs. These results suggest that the SHRs attributed less incentive value to the conditioned stimulus than the SD rats. During the presentation of the conditioned cue, cue directed responses are called sign tracking responses, whereas responses directed towards the food magazine are called goal tracking responses. Analysis of behavior using a standard Pavlovian conditioned approach index to quantify sign and goal tracking tendencies showed that both strains had a tendency towards goal tracking in this task. However, the SHRs showed a significantly greater goal tracking tendency than the SD rats. Taken together, these findings suggest that attribution of incentive value to reward predicting cues is attenuated in SHRs, which might explain their elevated sensitivity to delay of reward.


Asunto(s)
Motivación , Recompensa , Ratas , Animales , Ratas Sprague-Dawley , Ratas Endogámicas SHR , Conducta de Elección/fisiología , Señales (Psicología)
12.
Nat Commun ; 14(1): 6852, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891198

RESUMEN

Striatal dopamine encodes reward, with recent work showing that dopamine release occurs in spatiotemporal waves. However, the mechanism of dopamine waves is unknown. Here we report that acetylcholine release in mouse striatum also exhibits wave activity, and that the spatial scale of striatal dopamine release is extended by nicotinic acetylcholine receptors. Based on these findings, and on our demonstration that single cholinergic interneurons can induce dopamine release, we hypothesized that the local reciprocal interaction between cholinergic interneurons and dopamine axons suffices to drive endogenous traveling waves. We show that the morphological and physiological properties of cholinergic interneuron - dopamine axon interactions can be modeled as a reaction-diffusion system that gives rise to traveling waves. Analytically-tractable versions of the model show that the structure and the nature of propagation of acetylcholine and dopamine traveling waves depend on their coupling, and that traveling waves can give rise to empirically observed correlations between these signals. Thus, our study provides evidence for striatal acetylcholine waves in vivo, and proposes a testable theoretical framework that predicts that the observed dopamine and acetylcholine waves are strongly coupled phenomena.


Asunto(s)
Acetilcolina , Dopamina , Ratones , Animales , Acetilcolina/farmacología , Cuerpo Estriado , Neostriado , Colinérgicos , Interneuronas/fisiología
13.
J Neurosci ; 31(36): 13015-22, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21900580

RESUMEN

The striatum is the principal input nucleus of the basal ganglia, receiving glutamatergic afferents from the cerebral cortex. There is much interest in mechanisms of synaptic plasticity in the corticostriatal synapses. We used two-photon microscopy and whole-cell recording to measure changes in intracellular calcium concentration ([Ca(2+)](i)) associated with spike-time-dependent plasticity in mouse striatum. Uncaging glutamate adjacent to a dendritic spine caused a postsynaptic potential at the soma and a rise in spine [Ca(2+)](i). Action potentials elicited at the soma raised both dendrite and spine [Ca(2+)](i). Pairing protocols in which glutamate uncaging preceded action potentials by 10 ms (pre-post protocol) produced supralinear increases in spine [Ca(2+)](i) compared with the sum of increases seen with uncaging and action potentials alone, or timing protocols in which the uncaging followed the action potentials (post-pre protocols). The supralinear component of the increases in [Ca(2+)](i) were eliminated by the voltage-sensitive calcium channel blocker nimodipine. In the adjacent parent dendrites, the increases in [Ca(2+)](i) were neither supralinear nor sensitive to the relative pre-post timing. In parallel experiments, we investigated the effects of these pairing protocols on spike-timing-dependent synaptic plasticity. Long-term depression (t-LTD) of corticostriatal inputs was induced by pre-post but not post-pre protocols. Intracellular calcium chelators and calcium antagonists blocked pre-post t-LTD, confirming that elevated calcium entering via voltage-sensitive calcium channels is necessary for t-LTD. These findings confirm a spine [Ca(2+)](i) threshold for induction of t-LTD in the corticostriatal pathway, mediated by the supralinear increase in [Ca(2+)](i) associated with pre-post induction protocols.


Asunto(s)
Señalización del Calcio/fisiología , Cuerpo Estriado/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Quelantes/farmacología , Cuerpo Estriado/efectos de los fármacos , Dendritas/efectos de los fármacos , Dendritas/fisiología , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/fisiología , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Nimodipina/farmacología , Técnicas de Placa-Clamp , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiología
14.
J Neurosci ; 31(16): 6098-107, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21508235

RESUMEN

Modulation of oscillatory activity through basal ganglia-cortical loops in specific frequency bands is thought to reflect specific functional states of neural networks. A specific negative correlation between beta and gamma sub-bands has been demonstrated in human basal ganglia and may be key for normal basal ganglia function. However, these studies were limited to Parkinson's disease patients. To confirm that this interaction is a feature of normal basal ganglia, we recorded local field potential (LFP) from electrodes in globus pallidus (GP) of intact rats. We found significant negative correlation between specific frequencies within gamma (≈ 60 Hz) and beta (≈ 14 Hz) bands. Furthermore, we show that fluctuations in power at these frequencies are differentially nested within slow (≈ 3 Hz) oscillations in the delta band, showing maximum power at distinct and different phases of delta. These results suggest a hierarchical organization of LFP frequencies in the rat GP, in which a low-frequency signal in the basal ganglia can predict the timing and interaction of power fluctuations across higher frequencies. Finally, we found that dopamine D(1) and D(2) receptor antagonists differentially affected power in gamma and beta bands and also had different effects on correlation between them and the nesting within delta, indicating an important role for endogenous dopamine acting on direct and indirect pathway neurons in the maintenance of the hierarchical organization of frequency bands. Disruption of this hierarchical organization and subsequent disordered beta-gamma balance in basal ganglia disorders such as Parkinson's disease may be important in the pathogenesis of their symptoms.


Asunto(s)
Relojes Biológicos/fisiología , Globo Pálido/fisiología , Neuronas/fisiología , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Benzazepinas/farmacología , Relojes Biológicos/efectos de los fármacos , Antagonistas de Dopamina/farmacología , Electrofisiología , Globo Pálido/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Racloprida/farmacología , Ratas , Ratas Wistar
15.
Eur J Neurosci ; 35(7): 1115-23, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22487041

RESUMEN

In the past few decades there has been remarkable convergence of machine learning with neurobiological understanding of reinforcement learning mechanisms, exemplified by temporal difference (TD) learning models. The anatomy of the basal ganglia provides a number of potential substrates for instantiation of the TD mechanism. In contrast to the traditional concept of direct and indirect pathway outputs from the striatum, we emphasize that projection neurons of the striatum are branched and individual striatofugal neurons innervate both globus pallidus externa and globus pallidus interna/substantia nigra (GPi/SNr). This suggests that the GPi/SNr has the necessary inputs to operate as the source of a TD signal. We also discuss the mechanism for the timing processes necessary for learning in the TD framework. The TD framework has been particularly successful in analysing electrophysiogical recordings from dopamine (DA) neurons during learning, in terms of reward prediction error. However, present understanding of the neural control of DA release is limited, and hence the neural mechanisms involved are incompletely understood. Inhibition is very conspicuously present among the inputs to the DA neurons, with inhibitory synapses accounting for the majority of synapses on DA neurons. Furthermore, synchronous firing of the DA neuron population requires disinhibition and excitation to occur together in a coordinated manner. We conclude that the inhibitory circuits impinging directly or indirectly on the DA neurons play a central role in the control of DA neuron activity and further investigation of these circuits may provide important insight into the biological mechanisms of reinforcement learning.


Asunto(s)
Dopamina/fisiología , Neuronas Dopaminérgicas/fisiología , Aprendizaje/fisiología , Refuerzo en Psicología , Transmisión Sináptica/fisiología , Animales , Humanos , Inhibición Neural/fisiología , Neuronas/fisiología
16.
Neuroinformatics ; 20(4): 1121-1136, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35792992

RESUMEN

Neuronal networks are regulated by three-dimensional spatial and structural properties. Despite robust evidence of functional implications in the modulation of cognition, little is known about the three-dimensional internal organization of cholinergic networks in the forebrain. Cholinergic networks in the forebrain primarily occur in subcortical nuclei, specifically the septum, nucleus basalis, globus pallidus, nucleus accumbens, and the caudate-putamen. Therefore, the present investigation analyzed the three-dimensional spatial organization of 14,000 cholinergic neurons that expressed choline acetyltransferase (ChAT) in these subcortical nuclei of the mouse forebrain. Point process theory and graph signal processing techniques identified three topological principles of organization. First, cholinergic interneuronal distance is not uniform across brain regions. Specifically, in the septum, globus pallidus, nucleus accumbens, and the caudate-putamen, the cholinergic neurons were clustered compared with a uniform random distribution. In contrast, in the nucleus basalis, the cholinergic neurons had a spatial distribution of greater regularity than a uniform random distribution. Second, a quarter of the caudate-putamen is composed of axonal bundles, yet the spatial distribution of cholinergic neurons remained clustered when axonal bundles were accounted for. However, comparison with an inhomogeneous Poisson distribution showed that the nucleus basalis and caudate-putamen findings could be explained by density gradients in those structures. Third, the number of cholinergic neurons varies as a function of the volume of a specific brain region but cell body volume is constant across regions. The results of the present investigation provide topographic descriptions of cholinergic somata distribution and axonal conduits, and demonstrate spatial differences in cognitive control networks. The study provides a comprehensive digital database of the total population of ChAT-positive neurons in the reported structures, with the x,y,z coordinates of each neuron at micrometer resolution. This information is important for future digital cellular atlases and computational models of the forebrain cholinergic system enabling models based on actual spatial geometry.


Asunto(s)
Colina O-Acetiltransferasa , Globo Pálido , Animales , Ratones , Colina O-Acetiltransferasa/análisis , Colina O-Acetiltransferasa/metabolismo , Globo Pálido/química , Globo Pálido/metabolismo , Núcleo Accumbens/química , Núcleo Accumbens/metabolismo , Putamen/química , Putamen/metabolismo , Prosencéfalo/química , Prosencéfalo/metabolismo , Neuronas Colinérgicas/química , Neuronas Colinérgicas/metabolismo , Colinérgicos/análisis , Análisis Espacial
17.
Nat Commun ; 13(1): 1296, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277506

RESUMEN

Dopamine-dependent long-term plasticity is believed to be a cellular mechanism underlying reinforcement learning. In response to reward and reward-predicting cues, phasic dopamine activity potentiates the efficacy of corticostriatal synapses on spiny projection neurons (SPNs). Since phasic dopamine activity also encodes other behavioural variables, it is unclear how postsynaptic neurons identify which dopamine event is to induce long-term plasticity. Additionally, it is unknown how phasic dopamine released from arborised axons can potentiate targeted striatal synapses through volume transmission. To examine these questions we manipulated striatal cholinergic interneurons (ChIs) and dopamine neurons independently in two distinct in vivo paradigms. We report that long-term potentiation (LTP) at corticostriatal synapses with SPNs is dependent on the coincidence of pauses in ChIs and phasic dopamine activation, critically accompanied by SPN depolarisation. Thus, the ChI pause defines the time window for phasic dopamine to induce plasticity, while depolarisation of SPNs constrains the synapses eligible for plasticity.


Asunto(s)
Cuerpo Estriado , Dopamina , Colinérgicos , Neuronas Colinérgicas/fisiología , Cuerpo Estriado/fisiología , Dopamina/fisiología , Neuronas Dopaminérgicas , Interneuronas/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología
18.
Pharmaceutics ; 14(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35214199

RESUMEN

Drug delivery systems have the potential to deliver high concentrations of drug to target areas on demand, while elsewhere and at other times encapsulating the drug, to limit unwanted actions. Here we show proof of concept in vivo and ex vivo tests of a novel drug delivery system based on hollow-gold nanoparticles tethered to liposomes (HGN-liposomes), which become transiently permeable when activated by optical or acoustic stimulation. We show that laser or ultrasound simulation of HGN-liposomes loaded with the GABAA receptor agonist, muscimol, triggers rapid and repeatable release in a sufficient concentration to inhibit neurons and suppress seizure activity. In particular, laser-stimulated release of muscimol from previously injected HGN-liposomes caused subsecond hyperpolarizations of the membrane potential of hippocampal pyramidal neurons, measured by whole cell intracellular recordings with patch electrodes. In hippocampal slices and hippocampal-entorhinal cortical wedges, seizure activity was immediately suppressed by muscimol release from HGN-liposomes triggered by laser or ultrasound pulses. After intravenous injection of HGN-liposomes in whole anesthetized rats, ultrasound stimulation applied to the brain through the dura attenuated the seizure activity induced by pentylenetetrazol. Ultrasound alone, or HGN-liposomes without ultrasound stimulation, had no effect. Intracerebrally-injected HGN-liposomes containing kainic acid retained their contents for at least one week, without damage to surrounding tissue. Thus, we demonstrate the feasibility of precise temporal control over exposure of neurons to the drug, potentially enabling therapeutic effects without continuous exposure. For future application, studies on the pharmacokinetics, pharmacodynamics, and toxicity of HGN-liposomes and their constituents, together with improved methods of targeting, are needed, to determine the utility and safety of the technology in humans.

19.
J Physiol ; 589(17): 4365-81, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21746788

RESUMEN

Fast-spiking interneurones (FSIs) constitute a prominent part of the inhibitory microcircuitry of the striatum; however, little is known about their recruitment by synaptic inputs in vivo. Here, we report that, in contrast to cholinergic interneurones (CINs), FSIs (n = 9) recorded in urethane-anaesthetized rats exhibit Down-to-Up state transitions very similar to spiny projection neurones (SPNs). Compared to SPNs, the FSI Up state membrane potential was noisier and power spectra exhibited significantly larger power at frequencies in the gamma range (55-95 Hz). The membrane potential exhibited short and steep trajectories preceding spontaneous spike discharge, suggesting that fast input components controlled spike output in FSIs. Spontaneous spike data contained a high proportion (43.6 ± 32.8%) of small inter-spike intervals (ISIs) of <30 ms, setting FSIs clearly apart from SPNs and CINs. Cortical-evoked inputs had slower dynamics in SPNs than FSIs, and repetitive stimulation entrained SPN spike output only if the stimulation was delivered at an intermediate frequency (20 Hz), but not at a high frequency (100 Hz). Pharmacological induction of an activated ECoG state, known to promote rapid FSI spiking, mildly increased the power (by 43 ± 55%, n = 13) at gamma frequencies in the membrane potential of SPNs, but resulted in few small ISIs (<30 ms; 4.3 ± 6.4%, n = 8). The gamma frequency content did not change in CINs (n = 8). These results indicate that FSIs are uniquely responsive to high-frequency input sequences. By controlling the spike output of SPNs, FSIs could serve gating of top-down signals and long-range synchronisation of gamma-oscillations during behaviour.


Asunto(s)
Interneuronas , Potenciales de la Membrana , Potenciales de Acción , Animales , Cuerpo Estriado , Neostriado , Neuronas
20.
Neurosci Biobehav Rev ; 124: 16-34, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33497781

RESUMEN

Associative learning makes important contributions to our behavior and decisions. The Kamin blocking effect is an associative learning phenomenon that plays a central role in understanding of the psychological principles underlying associative learning. However, several recent failures to replicate the blocking effect suggest that the conditions necessary for blocking are poorly understood. To understand the conditions necessary for blocking, here we review studies into the expression of blocking in subjects that either approach and interact with the conditioned cue (sign trackers) or approach and interact with the reward location (goal trackers) during appetitive classical conditioning. Psychological theory and the neurophysiological correlates of appetitive classical conditioning make opposing predictions regarding the expression of blocking in sign and goal trackers. We reconcile these opposing predictions in a qualitative model using two parallel learning processes. Such models offer a better framework for understanding the psychological associative structures acquired during learning, their interactions contributing to the conditioned response, and how they affect subsequent learning and the expression of the Kamin blocking effect.


Asunto(s)
Condicionamiento Clásico , Recompensa , Humanos , Aprendizaje , Motivación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA