Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Analyst ; 148(9): 1978-1990, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37000525

RESUMEN

T cells are considered to be critical drivers of intestinal inflammation in mice and people. The so called intra-epithelial lymphocyte (IEL) compartment largely consist of T cells. Interestingly, the specific regulation and contribution of IELs in the context of inflammatory bowel disease remains poorly understood, in part due to the lack of appropriate analysis tools. Powerful, label-free methods could ultimately provide access to this cell population and hence give valuable insight into IEL biology and even more to their disease-related functionalities. Raman spectroscopy has demonstrated over the last few years its potential for reliable cell characterization and differentiation, but its utility in regard to IEL exploration remains unknown. To address this question experimentally, we utilized a murine, T cell-driven experimental model system which is accepted to model human gut inflammation. Here, we repopulated the small intestinal IEL compartment (SI IELs) of Rag1-deficient mice endogenously lacking T cells by transferring naïve CD4+ T helper cells intraperitoneally. Using multivariate statistical analysis, high-throughput Raman spectroscopy managed to define a cell subpopulation ex vivo within the SI IEL pool of mice previously receiving T cells in vivo that displayed characteristic spectral features of lymphocytes. Raman data sets matched flow cytometry analyses with the latter identifying T cell receptor (TCR)αß+ CD4+ T cell population in SI IELs from T cell-transferred mice, but not from control mice, in an abundance comparable to the one detected by Raman spectroscopy. Hence, in this study, we provide experimental evidence for high-throughput Raman spectroscopy to be a novel, future tool to reliably identify and potentially further characterize the T cell pool of small intestinal IELs ex vivo.


Asunto(s)
Receptores de Antígenos de Linfocitos T gamma-delta , Espectrometría Raman , Ratones , Humanos , Animales , Receptores de Antígenos de Linfocitos T gamma-delta/análisis , Linfocitos T , Intestino Delgado/química , Linfocitos/química , Receptores de Antígenos de Linfocitos T alfa-beta/análisis , Mucosa Intestinal/química
2.
Biomed Opt Express ; 13(7): 3723-3742, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35991909

RESUMEN

Research in translational medicine often requires high-resolution characterization techniques to visualize or quantify the fluorescent probes. For example, drug delivery systems contain fluorescent molecules enabling in vitro and in vivo tracing to determine biodistribution or plasma disappearance. Albeit fluorescence imaging systems with sufficient resolution exist, the sample preparation is typically too complex to image a whole organism of the size of a mouse. This article established a mesoscopic imaging technique utilizing a commercially available cryo-microtome and an in-house built episcopic imaging add-on to perform imaging during serial sectioning. Here we demonstrate that our automated red, green, blue (RGB) and fluorescence mesoscope can generate sequential block-face and 3-dimensional anatomical images at variable thickness with high quality of 6 µm × 6 µm pixel size. In addition, this mesoscope features a numerical aperture of 0.10 and a field-of-view of up to 21.6 mm × 27 mm × 25 mm (width, height, depth).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA