Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Ind Microbiol Biotechnol ; 48(9-10)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34415047

RESUMEN

Many fungi develop both asexual and sexual spores that serve as propagules for dissemination and/or recombination of genetic traits. Asexual spores are often heavily pigmented and this pigmentation provides protection from UV light. However, little is known about any purpose pigmentation that may serve for sexual spores. The model Ascomycete Aspergillus nidulans produces both green pigmented asexual spores (conidia) and red pigmented sexual spores (ascospores). Here we find that the previously characterized red pigment, asperthecin, is the A. nidulans ascospore pigment. The asperthecin biosynthetic gene cluster is composed of three genes: aptA, aptB, and aptC, where deletion of either aptA (encoding a polyketide synthase) or aptB (encoding a thioesterase) yields small, mishappen hyaline ascospores; while deletion of aptC (encoding a monooxygenase) yields morphologically normal but purple ascospores. ∆aptA and ∆aptB but not ∆aptC or wild type ascospores are extremely sensitive to UV light. We find that two historical ascospore color mutants, clA6 and clB1, possess mutations in aptA and aptB sequences, respectively.


Asunto(s)
Aspergillus nidulans , Antraquinonas , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Pigmentación , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Rayos Ultravioleta
2.
Environ Microbiol ; 22(6): 2292-2311, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32239586

RESUMEN

The antifungal echinocandin lipopeptide, acrophiarin, was circumscribed in a patent in 1979. We confirmed that the producing strain NRRL 8095 is Penicillium arenicola and other strains of P. arenicola produced acrophiarin and acrophiarin analogues. Genome sequencing of NRRL 8095 identified the acrophiarin gene cluster. Penicillium arenicola and echinocandin-producing Aspergillus species belong to the family Aspergillaceae of the Eurotiomycetes, but several features of acrophiarin and its gene cluster suggest a closer relationship with echinocandins from Leotiomycete fungi. These features include hydroxy-glutamine in the peptide core instead of a serine or threonine residue, the inclusion of a non-heme iron, α-ketoglutarate-dependent oxygenase for hydroxylation of the C3 of the glutamine, and a thioesterase. In addition, P. arenicola bears similarity to Leotiomycete echinocandin-producing species because it exhibits self-resistance to exogenous echinocandins. Phylogenetic analysis of the genes of the echinocandin biosynthetic family indicated that most of the predicted proteins of acrophiarin gene cluster exhibited higher similarity to the predicted proteins of the pneumocandin gene cluster of the Leotiomycete Glarea lozoyensis than to those of the echinocandin B gene cluster from A. pachycristatus. The fellutamide gene cluster and related gene clusters are recognized as relatives of the echinocandins. Inclusion of the acrophiarin gene cluster into a comprehensive phylogenetic analysis of echinocandin gene clusters indicated the divergent evolutionary lineages of echinocandin gene clusters are descendants from a common ancestral progenitor. The minimal 10-gene cluster may have undergone multiple gene acquisitions or losses and possibly horizontal gene transfer after the ancestral separation of the two lineages.


Asunto(s)
Antiinfecciosos/metabolismo , Ascomicetos , Aspergillus , Equinocandinas , Lipopéptidos , Penicillium , Ascomicetos/genética , Aspergillus/genética , Equinocandinas/biosíntesis , Equinocandinas/genética , Lipopéptidos/biosíntesis , Lipopéptidos/genética , Familia de Multigenes , Penicillium/genética
3.
PLoS Biol ; 15(11): e2003583, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29149178

RESUMEN

Filamentous fungi produce a diverse array of secondary metabolites (SMs) critical for defense, virulence, and communication. The metabolic pathways that produce SMs are found in contiguous gene clusters in fungal genomes, an atypical arrangement for metabolic pathways in other eukaryotes. Comparative studies of filamentous fungal species have shown that SM gene clusters are often either highly divergent or uniquely present in one or a handful of species, hampering efforts to determine the genetic basis and evolutionary drivers of SM gene cluster divergence. Here, we examined SM variation in 66 cosmopolitan strains of a single species, the opportunistic human pathogen Aspergillus fumigatus. Investigation of genome-wide within-species variation revealed 5 general types of variation in SM gene clusters: nonfunctional gene polymorphisms; gene gain and loss polymorphisms; whole cluster gain and loss polymorphisms; allelic polymorphisms, in which different alleles corresponded to distinct, nonhomologous clusters; and location polymorphisms, in which a cluster was found to differ in its genomic location across strains. These polymorphisms affect the function of representative A. fumigatus SM gene clusters, such as those involved in the production of gliotoxin, fumigaclavine, and helvolic acid as well as the function of clusters with undefined products. In addition to enabling the identification of polymorphisms, the detection of which requires extensive genome-wide synteny conservation (e.g., mobile gene clusters and nonhomologous cluster alleles), our approach also implicated multiple underlying genetic drivers, including point mutations, recombination, and genomic deletion and insertion events as well as horizontal gene transfer from distant fungi. Finally, most of the variants that we uncover within A. fumigatus have been previously hypothesized to contribute to SM gene cluster diversity across entire fungal classes and phyla. We suggest that the drivers of genetic diversity operating within a fungal species shown here are sufficient to explain SM cluster macroevolutionary patterns.


Asunto(s)
Aspergillus fumigatus/genética , Redes y Vías Metabólicas/genética , Metabolismo Secundario/genética , Alelos , Aspergillus fumigatus/metabolismo , Evolución Biológica , Proteínas Fúngicas/metabolismo , Hongos/genética , Variación Genética/genética , Genoma Fúngico/genética , Genómica/métodos , Familia de Multigenes/genética , Mutación/genética , Polimorfismo Genético/genética
4.
Fungal Genet Biol ; 89: 102-113, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26701311

RESUMEN

Small peptides formed from non-ribosomal peptide synthetases (NRPS) are bioactive molecules produced by many fungi including the genus Aspergillus. A subset of NRPS utilizes tryptophan and its precursor, the non-proteinogenic amino acid anthranilate, in synthesis of various metabolites such as Aspergillus fumigatus fumiquinazolines (Fqs) produced by the fmq gene cluster. The A. fumigatus genome contains two putative anthranilate synthases - a key enzyme in conversion of anthranilic acid to tryptophan - one beside the fmq cluster and one in a region of co-linearity with other Aspergillus spp. Only the gene found in the co-linear region, trpE, was involved in tryptophan biosynthesis. We found that site-specific mutations of the TrpE feedback domain resulted in significantly increased production of anthranilate, tryptophan, p-aminobenzoate and fumiquinazolines FqF and FqC. Supplementation with tryptophan restored metabolism to near wild type levels in the feedback mutants and suggested that synthesis of the tryptophan degradation product kynurenine could negatively impact Fq synthesis. The second putative anthranilate synthase gene next to the fmq cluster was termed icsA for its considerable identity to isochorismate synthases in bacteria. Although icsA had no impact on A. fumigatus Fq production, deletion and over-expression of icsA increased and decreased respectively aromatic amino acid levels suggesting that IcsA can draw from the cellular chorismate pool.


Asunto(s)
Antranilato Sintasa/genética , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Retroalimentación Fisiológica , Proteínas Fúngicas/genética , Metabolismo Secundario/genética , Triptófano/metabolismo , Secuencia de Aminoácidos , Aminoácidos , Antranilato Sintasa/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/metabolismo , Familia de Multigenes , Mutación , Péptido Sintasas/genética , Quinazolinas/metabolismo , ortoaminobenzoatos/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(42): 17065-70, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24082142

RESUMEN

The hallmark trait of fungal secondary-metabolite gene clusters is well established, consisting of contiguous enzymatic and often regulatory gene(s) devoted to the production of a metabolite of a specific chemical class. Unexpectedly, we have found a deviation from this motif in a subtelomeric region of Aspergillus fumigatus. This region, under the control of the master regulator of secondary metabolism, LaeA, contains, in its entirety, the genetic machinery for three natural products (fumitremorgin, fumagillin, and pseurotin), where genes for fumagillin and pseurotin are physically intertwined in a single supercluster. Deletions of 29 adjoining genes revealed that fumagillin and pseurotin are coregulated by the supercluster-embedded regulatory gene with biosynthetic genes belonging to one of the two metabolic pathways in a noncontiguous manner. Comparative genomics indicates the fumagillin/pseurotin supercluster is maintained in a rapidly evolving region of diverse fungal genomes. This blended design confounds predictions from established secondary-metabolite cluster search algorithms and provides an expanded view of natural product evolution.


Asunto(s)
Aspergillus fumigatus/metabolismo , Ciclohexanos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Genes Fúngicos/fisiología , Indenos/metabolismo , Familia de Multigenes/fisiología , Pirrolidinonas/metabolismo , Algoritmos , Aspergillus fumigatus/genética , Ácidos Grasos Insaturados/genética , Análisis de Secuencia de ADN/métodos , Sesquiterpenos/metabolismo
6.
Fungal Genet Biol ; 75: 20-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25543026

RESUMEN

Members of the genus Fusarium produce a plethora of bioactive secondary metabolites, which can be harmful to humans and animals or have potential in drug development. In this study we have performed comparative analyses of polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) from ten different Fusarium species including F. graminearum (two strains), F. verticillioides, F. solani, F. culmorum, F. pseudograminearum, F. fujikuroi, F. acuminatum, F. avenaceum, F. equiseti, and F. oxysporum (12 strains). This led to identification of 52 NRPS and 52 PKSs orthology groups, respectively, and although not all PKSs and NRPSs are assumed to be intact or functional, the analyses illustrate the huge secondary metabolite potential in Fusarium. In our analyses we identified a core collection of eight NRPSs (NRPS2-4, 6, 10-13) and two PKSs (PKS3 and PKS7) that are conserved in all strains analyzed in this study. The identified PKSs and NRPSs were named based on a previously developed classification system (www.FusariumNRPSPKS.dk). We suggest this system be used when PKSs and NRPSs have to be classified in future sequenced Fusarium strains. This system will facilitate identification of orthologous and non-orthologous NRPSs and PKSs from newly sequenced Fusarium genomes and will aid the scientific community by providing a common nomenclature for these two groups of genes/enzymes.


Asunto(s)
Fusarium/genética , Péptido Sintasas/clasificación , Péptido Sintasas/genética , Sintasas Poliquetidas/clasificación , Sintasas Poliquetidas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/genética , Fusarium/química , Fusarium/clasificación , Fusarium/enzimología , Genes Fúngicos , Filogenia , Terminología como Asunto
7.
Fungal Genet Biol ; 84: 26-36, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26382642

RESUMEN

Secondary metabolites of filamentous fungi can be highly bioactive, ranging from antibiotic to cancerogenic properties. In this study we were able to identify a new, yet unknown metabolite produced by Fusarium fujikuroi, an ascomycetous rice pathogen. With the help of genomic engineering and high-performance liquid chromatography (HPLC) coupled to high resolution mass spectrometry (HRMS) followed by isolation and detailed structure elucidation, the new substance could be designated as an unknown bikaverin precursor, missing two methyl- and one hydroxy group, hence named oxo-pre-bikaverin. Though the bikaverin gene cluster has been extensively studied in the past, elucidation of the biosynthetic pathway remained elusive due to a negative feedback loop that regulates the genes within the cluster. To decipher the bikaverin biosynthetic pathway and to overcome these negative regulation circuits, the structural cluster genes BIK2 and BIK3 were overexpressed independently in the ΔΔBIK2/BIK3+OE::BIK1 mutant background by using strong constitutive promoters. Using the software tool MZmine 2, the metabolite profile of the generated mutants obtained by HPLC-HRMS was compared, revealing further intermediates.


Asunto(s)
Fusarium/genética , Fusarium/metabolismo , Ingeniería Genética/métodos , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Xantonas/metabolismo , Vías Biosintéticas , Proliferación Celular/efectos de los fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Células Hep G2 , Humanos , Familia de Multigenes , Mutación , Oryza/microbiología , Xantonas/química , Xantonas/aislamiento & purificación , Xantonas/farmacología
8.
PLoS Pathog ; 9(6): e1003475, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825955

RESUMEN

The fungus Fusarium fujikuroi causes "bakanae" disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19) and another that includes a non-ribosomal peptide synthetase gene (NRPS31) are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary success of F. fujikuroi as a rice pathogen.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Genoma Fúngico/fisiología , Estudio de Asociación del Genoma Completo , Oryza/microbiología , Enfermedades de las Plantas/microbiología
9.
BMC Genomics ; 15: 1011, 2014 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-25416206

RESUMEN

BACKGROUND: Chemical mutagenesis screens are useful to identify mutants involved in biological processes of interest. Identifying the mutation from such screens, however, often fails when using methodologies involving transformation of the mutant to wild type phenotype with DNA libraries. RESULTS: Here we analyzed Illumina sequence of a chemically derived mutant of Aspergillus nidulans and identified a gene encoding a C2H2 transcription factor termed RsrA for regulator of stress response. RsrA is conserved in filamentous fungal genomes, and upon deleting the gene in three Aspergillus species (A. nidulans, A. flavus and A. fumigatus), we found two conserved phenotypes: enhanced resistance to oxidative stress and reduction in sporulation processes. For all species, rsrA deletion mutants were more resistant to hydrogen peroxide treatment. In depth examination of this latter characteristic in A. nidulans showed that upon exposure to hydrogen peroxide, RsrA loss resulted in global up-regulation of several components of the oxidative stress metabolome including the expression of napA and atfA, the two bZIP transcription factors mediating resistance to reactive oxygen species (ROS) as well as NapA targets in thioredoxin and glutathione systems. Coupling transcriptional data with examination of ΔrsrAΔatfA and ΔrsrAΔnapA double mutants indicate that RsrA primarily operates through NapA-mediated stress response pathways. A model of RsrA regulation of ROS response in Aspergillus is presented. CONCLUSION: RsrA, found in a highly syntenic region in Aspergillus genomes, coordinates a NapA mediated oxidative response in Aspergillus fungi.


Asunto(s)
Aspergillus/genética , Secuencia Conservada , Proteínas Fúngicas/metabolismo , Estrés Oxidativo , Análisis de Secuencia de ADN , Transducción de Señal , Factores de Transcripción/genética , Aspergillus/citología , Aspergillus/efectos de los fármacos , Southern Blotting , Cromatografía en Capa Delgada , Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Prueba de Complementación Genética , Peróxido de Hidrógeno/farmacología , Meiosis/efectos de los fármacos , Mitosis/efectos de los fármacos , Modelos Biológicos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Fenotipo , Reproducción/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Esterigmatocistina/biosíntesis , Sintenía/genética , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos
10.
J Ind Microbiol Biotechnol ; 41(2): 301-13, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24146366

RESUMEN

Fungi are well known for their ability to produce a multitude of natural products. On the one hand their potential to provide beneficial antibiotics and immunosuppressants has been maximized by the pharmaceutical industry to service the market with cost-efficient drugs. On the other hand identification of trace amounts of known mycotoxins in food and feed samples is of major importance to ensure consumer health and safety. Although several fungal natural products, their biosynthesis and regulation are known today, recent genome sequences of hundreds of fungal species illustrate that the secondary metabolite potential of fungi has been substantially underestimated. Since expression of genes and subsequent production of the encoded metabolites are frequently cryptic or silent under standard laboratory conditions, strategies for activating these hidden new compounds are essential. This review will cover the latest advances in fungal genome mining undertaken to unlock novel products.


Asunto(s)
Productos Biológicos/metabolismo , Hongos/genética , Genoma Fúngico , Productos Biológicos/química , Hongos/enzimología , Regulación Fúngica de la Expresión Génica , Metabolismo Secundario/genética
11.
Fungal Genet Biol ; 49(8): 602-12, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22713715

RESUMEN

The filamentous fungus Fusarium verticillioides can cause disease of maize and is capable of producing fumonisins, a family of toxic secondary metabolites linked to esophageal cancer and neural tube defects in humans and lung edema in swine and leukoencephalomalacia in equines. The expression of fumonisin biosynthetic genes is influenced by broad-domain transcription factors (global regulators) and Fum21, a pathway-specific transcription factor. LaeA is a global regulator that in Aspergillus nidulans, affects the expression of multiple secondary metabolite gene clusters by modifying heterochromatin structure. Here, we employed gene deletion analysis to assess the effect of loss of a F. verticillioides laeA orthologue, LAE1, on genome-wide gene expression and secondary metabolite production. Loss of Lae1 resulted in reduced expression of gene clusters responsible for synthesis of the secondary metabolites bikaverin, fumonisins, fusaric acid and fusarins as well as two clusters for which the corresponding secondary metabolite is unknown. Analysis of secondary metabolites revealed that, in contrast to a previously described Fusarium fujikuroi lae1 mutant, bikaverin production is reduced. Fumonisin production is unchanged in the F. verticillioides lae1 mutant. Complementation of the F. verticillioides mutant resulted in increased fumonisin production.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Metaboloma/genética , Secuencia de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Prueba de Complementación Genética , Datos de Secuencia Molecular , Familia de Multigenes , Sintasas Poliquetidas/genética , Alineación de Secuencia
12.
Appl Environ Microbiol ; 78(12): 4468-80, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22492438

RESUMEN

Fusarium fujikuroi produces a variety of secondary metabolites, of which polyketides form the most diverse group. Among these are the highly pigmented naphthoquinones, which have been shown to possess different functional properties for the fungus. A group of naphthoquinones, polyketides related to fusarubin, were identified in Fusarium spp. more than 60 years ago, but neither the genes responsible for their formation nor their biological function has been discovered to date. In addition, although it is known that the sexual fruiting bodies in which the progeny of the fungus develops are darkly colored by a polyketide synthase (PKS)-derived pigment, the structure of this pigment has never been elucidated. Here we present data that link the fusarubin-type polyketides to a defined gene cluster, which we designate fsr, and demonstrate that the fusarubins are the pigments responsible for the coloration of the perithecia. We studied their regulation and the function of the single genes within the cluster by a combination of gene replacements and overexpression of the PKS-encoding gene, and we present a model for the biosynthetic pathway of the fusarubins based on these data.


Asunto(s)
Vías Biosintéticas/genética , Fusarium/metabolismo , Pigmentos Biológicos/biosíntesis , Policétidos/metabolismo , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Datos de Secuencia Molecular , Familia de Multigenes , Análisis de Secuencia de ADN
13.
New Phytol ; 193(3): 570-575, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22150231

RESUMEN

• There is controversy as to whether specific natural products play a role in directly mediating antagonistic plant-plant interactions - that is, allelopathy. If proved to exist, such phenomena would hold considerable promise for agronomic improvement of staple food crops such as rice (Oryza sativa). • However, while substantiated by the presence of phytotoxic compounds at potentially relevant concentrations, demonstrating a direct role for specific natural products in allelopathy has been difficult because of the chemical complexity of root and plant litter exudates. This complexity can be bypassed via selective genetic manipulation to ablate production of putative allelopathic compounds, but such an approach previously has not been applied. • The rice diterpenoid momilactones provide an example of natural products for which correlative biochemical evidence has been obtained for a role in allelopathy. Here, we apply reverse genetics, using knock-outs of the relevant diterpene synthases (copalyl diphosphate synthase 4 (OsCPS4) and kaurene synthase-like 4 (OsKSL4)), to demonstrate that rice momilactones are involved in allelopathy, including suppressing growth of the widespread rice paddy weed, barnyard grass (Echinochloa crus-galli). • Thus, our results not only provide novel genetic evidence for natural product-mediated allelopathy, but also furnish a molecular target for breeding and metabolic engineering of this important crop plant.


Asunto(s)
Productos Biológicos/farmacología , Echinochloa/fisiología , Oryza/genética , Oryza/fisiología , Transferasas Alquil y Aril/metabolismo , Productos Biológicos/química , Resistencia a la Enfermedad/efectos de los fármacos , Echinochloa/efectos de los fármacos , Echinochloa/crecimiento & desarrollo , Técnicas de Inactivación de Genes , Germinación/efectos de los fármacos , Lactonas/química , Lactonas/farmacología , Mutación/genética , Oryza/enzimología , Oryza/crecimiento & desarrollo , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo
14.
Nat Chem Biol ; 11(9): 625-31, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26284661
15.
Mol Microbiol ; 77(4): 972-94, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20572938

RESUMEN

Besides industrially produced gibberellins (GAs), Fusarium fujikuroi is able to produce additional secondary metabolites such as the pigments bikaverin and neurosporaxanthin and the mycotoxins fumonisins and fusarin C. The global regulation of these biosynthetic pathways is only poorly understood. Recently, the velvet complex containing VeA and several other regulatory proteins was shown to be involved in global regulation of secondary metabolism and differentiation in Aspergillus nidulans. Here, we report on the characterization of two components of the F. fujikuroi velvet-like complex, FfVel1 and FfLae1. The gene encoding this first reported LaeA orthologue outside the class of Eurotiomycetidae is upregulated in ΔFfvel1 microarray-studies and FfLae1 interacts with FfVel1 in the nucleus. Deletion of Ffvel1 and Fflae1 revealed for the first time that velvet can simultaneously act as positive (GAs, fumonisins and fusarin C) and negative (bikaverin) regulator of secondary metabolism, and that both components affect conidiation and virulence of F. fujikuroi. Furthermore, the velvet-like protein FfVel2 revealed similar functions regarding conidiation, secondary metabolism and virulence as FfVel1. Cross-genus complementation studies of velvet complex component mutants between Fusarium, Aspergillus and Penicillium support an ancient origin for this complex, which has undergone a divergence in specific functions mediating development and secondary metabolism.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/fisiología , Regulación Fúngica de la Expresión Génica , Metabolismo Secundario , Secuencia de Aminoácidos , Núcleo Celular/química , ADN de Hongos/química , ADN de Hongos/genética , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/crecimiento & desarrollo , Fusarium/patogenicidad , Eliminación de Gen , Perfilación de la Expresión Génica , Análisis por Micromatrices , Datos de Secuencia Molecular , Micotoxinas/metabolismo , Pigmentos Biológicos , Mapeo de Interacción de Proteínas , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Virulencia
16.
Fungal Genet Biol ; 89: 1-2, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26968149
17.
Microorganisms ; 9(10)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34683444

RESUMEN

In order to gain a comprehensive understanding of plant disease in natural and agricultural ecosystems, it is essential to examine plant disease in multi-pathogen-host systems. Ralstonia solanacearum and Fusarium oxysporum f. sp. lycopersici are vascular wilt pathogens that can result in heavy yield losses in susceptible hosts such as tomato. Although both pathogens occupy the xylem, the costs of mixed infections on wilt disease are unknown. Here, we characterize the consequences of co-infection with R. solanacearum and F. oxysporum using tomato as the model host. Our results demonstrate that bacterial wilt severity is reduced in co-infections, that bikaverin synthesis by Fusarium contributes to bacterial wilt reduction, and that the arrival time of each microbe at the infection court is important in driving the severity of wilt disease. Further, analysis of the co-infection root secretome identified previously uncharacterized secreted metabolites that reduce R. solanacearum growth in vitro and provide protection to tomato seedlings against bacterial wilt disease. Taken together, these results highlight the need to understand the consequences of mixed infections in plant disease.

18.
Mol Microbiol ; 72(4): 931-46, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19400779

RESUMEN

Fusarium secondary metabolites are structurally diverse, have a variety of activities and are generally poorly understood biosynthetically. The F. fujikuroi polyketide synthase gene bik1 was previously shown to be responsible for formation of the mycelial pigment bikaverin. Here we present the characterization of five genes adjacent to bik1 as encoding a putative FAD-dependent monooxygenase (bik2), an O-methyltransferase (bik3), an NmrA-like protein (bik4), a Zn(II)2Cys6 transcription factor (bik5) and an MFS transporter (bik6). Deletion of each gene resulted in total loss or significant reduction of bikaverin synthesis. Expression studies revealed that all bik genes are repressed by high amounts of nitrogen in an AreA-independent manner and are subject to a time- and pH-dependent regulation. Deletion of the pH regulatory gene pacC resulted in partial derepression while complementation with a dominant active allele resulted in repression of bik genes at acidic ambient pH. Transcription of all bik genes in strains lacking bik1, bik2 or bik3 was essentially eliminated, while transcription of some bik genes was detected in strains lacking bik4, bik5 or bik6. Thus, bikaverin synthesis is regulated by a complex regulatory network. Understanding how different factors influence the synthesis of this model secondary metabolite will aid understanding secondary metabolism in general.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/genética , Familia de Multigenes , Pigmentos Biológicos/biosíntesis , Xantonas/metabolismo , Proteínas Fúngicas/genética , Fusarium/metabolismo , Regulación Fúngica de la Expresión Génica , Marcación de Gen , Genes Fúngicos , Prueba de Complementación Genética , Biblioteca Genómica , Concentración de Iones de Hidrógeno , Estructura Molecular , Nitrógeno/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo
19.
Front Microbiol ; 11: 1766, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849391

RESUMEN

Cryptococcus neoformans is an important human pathogen with limited options for treatments. We have interrogated extracts from fungal fermentations to find Cryptococcus-inhibiting natural products using assays for growth inhibition, differential thermosensitivity, and synergy with existing antifungal drugs. Extracts from fermentations of strains of Discosia rubi from eastern Texas showed anticryptococcal bioactivity with preferential activity in agar zone of inhibition assays against C. neoformans at 37°C versus 25°C. Assay-guided fractionation led to the purification and identification of chaetoglobosin P as the active component of these extracts. Genome sequencing of these strains revealed a biosynthetic gene cluster consistent with chaetoglobosin biosynthesis and ß-methylation of the tryptophan residue. Proximity of genes of the actin-binding protein twinfilin-1 to the chaetoglobosin P and K gene clusters suggested a possible self-resistance mechanism involving twinfilin-1 which is consistent with the predicted mechanism of action involving interference with the polymerization of the capping process of filamentous actin. A C. neoformans mutant lacking twinfilin-1 was hypersensitive to chaetoglobosin P. Chaetoglobosins also potentiated the effects of amphotericin B and caspofungin on C. neoformans.

20.
J Microbiol ; 57(6): 509-520, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31012059

RESUMEN

Mucor circinelloides is a pathogenic fungus and etiologic agent of mucormycosis. In 2013, cases of gastrointestinal illness after yogurt consumption were reported to the US FDA, and the producer found that its products were contaminated with Mucor. A previous study found that the Mucor strain isolated from an open contaminated yogurt exhibited virulence in a murine systemic infection model and showed that this strain is capable of surviving passage through the gastrointestinal tract of mice. In this study, we isolated another Mucor strain from an unopened yogurt that is closely related but distinct from the first Mucor strain and subsequently examined if Mucor alters the gut microbiota in a murine host model. DNA extracted from a ten-day course of stool samples was used to analyze the microbiota in the gastrointestinal tracts of mice exposed via ingestion of Mucor spores. The bacterial 16S rRNA gene and fungal ITS1 sequences obtained were used to identify taxa of each kingdom. Linear regressions revealed that there are changes in bacterial and fungal abundance in the gastrointestinal tracts of mice which ingested Mucor. Furthermore, we found an increased abundance of the bacterial genus Bacteroides and a decreased abundance of the bacteria Akkermansia muciniphila in the gastrointestinal tracts of exposed mice. Measurements of abundances show shifts in relative levels of multiple bacterial and fungal taxa between mouse groups. These findings suggest that exposure of the gastrointestinal tract to Mucor can alter the microbiota and, more importantly, illustrate an interaction between the intestinal mycobiota and bacteriota. In addition, Mucor was able to induce increased permeability in epithelial cell monolayers in vitro, which might be indicative of unstable intestinal barriers. Understanding how the gut microbiota is shaped is important to understand the basis of potential methods of treatment for gastrointestinal illness. How the gut microbiota changes in response to exposure, even by pathogens not considered to be causative agents of food-borne illness, may be important to how commercial food producers prevent and respond to contamination of products aimed at the public. This study provides evidence that the fungal microbiota, though understudied, may play an important role in diseases of the human gut.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Interacciones Microbianas/fisiología , Mucor/fisiología , Mucor/patogenicidad , Animales , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Permeabilidad de la Membrana Celular , ADN Bacteriano/aislamiento & purificación , ADN de Hongos , Modelos Animales de Enfermedad , Células Epiteliales , Heces/microbiología , Microbioma Gastrointestinal/genética , Ratones , Mucor/genética , Mucor/aislamiento & purificación , Mucormicosis/microbiología , ARN Ribosómico 16S/genética , Virulencia , Yogur/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA