Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(6): 989-997, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37167966

RESUMEN

Statins are a mainstay intervention for cardiovascular disease prevention, yet their use can cause rare severe myopathy. HMG-CoA reductase, an essential enzyme in the mevalonate pathway, is the target of statins. We identified nine individuals from five unrelated families with unexplained limb-girdle like muscular dystrophy and bi-allelic variants in HMGCR via clinical and research exome sequencing. The clinical features resembled other genetic causes of muscular dystrophy with incidental high CPK levels (>1,000 U/L), proximal muscle weakness, variable age of onset, and progression leading to impaired ambulation. Muscle biopsies in most affected individuals showed non-specific dystrophic changes with non-diagnostic immunohistochemistry. Molecular modeling analyses revealed variants to be destabilizing and affecting protein oligomerization. Protein activity studies using three variants (p.Asp623Asn, p.Tyr792Cys, and p.Arg443Gln) identified in affected individuals confirmed decreased enzymatic activity and reduced protein stability. In summary, we showed that individuals with bi-allelic amorphic (i.e., null and/or hypomorphic) variants in HMGCR display phenotypes that resemble non-genetic causes of myopathy involving this reductase. This study expands our knowledge regarding the mechanisms leading to muscular dystrophy through dysregulation of the mevalonate pathway, autoimmune myopathy, and statin-induced myopathy.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Musculares , Distrofia Muscular de Cinturas , Distrofias Musculares , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Ácido Mevalónico , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/diagnóstico , Enfermedades Musculares/genética , Oxidorreductasas , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/efectos adversos
2.
Brain ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884572

RESUMEN

Alpha-tubulin 4A encoding gene (TUBA4A) has been associated with familial amyotrophic lateral sclerosis (fALS) and fronto-temporal dementia (FTD), based on identification of likely pathogenic variants in patients from distinct ALS and FTD cohorts. By screening a multicentric French cohort of 448 unrelated probands presenting with cerebellar ataxia, we identified ultra-rare TUBA4A missense variants, all being absent from public databases and predicted pathogenic by multiple in-silico tools. In addition, gene burden analyses in the 100,000 genomes project (100KGP) showed enrichment of TUBA4A rare variants in the inherited ataxia group compared to controls (OR: 57.0847 [10.2- 576.7]; p = 4.02 x10-07). Altogether, we report 12 patients presenting with spasticity and/or cerebellar ataxia and harboring a predicted pathogenic TUBA4A missense mutation, including 5 confirmed de novo cases and a mutation previously reported in a large family presenting with spastic ataxia. Cultured fibroblasts from 3 patients harboring distinct TUBA4A missense showed significant alterations in microtubule organisation and dynamics, providing insight of TUBA4A variants pathogenicity. Our data confirm the identification of a hereditary spastic ataxia disease gene with variable age of onset, expanding the clinical spectrum of TUBA4A associated phenotypes.

3.
J Transl Med ; 21(1): 410, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353797

RESUMEN

BACKGROUND: In the United States, rare disease (RD) is defined as a condition that affects fewer than 200,000 individuals. Collectively, RD affects an estimated 30 million Americans. A significant portion of RD has an underlying genetic cause; however, this may go undiagnosed. To better serve these patients, the Mayo Clinic Program for Rare and Undiagnosed Diseases (PRaUD) was created under the auspices of the Center for Individualized Medicine (CIM) aiming to integrate genomics into subspecialty practice including targeted genetic testing, research, and education. METHODS: Patients were identified by subspecialty healthcare providers from 11 clinical divisions/departments. Targeted multi-gene panels or custom exome/genome-based panels were utilized. To support the goals of PRaUD, a new clinical service model, the Genetic Testing and Counseling (GTAC) unit, was established to improve access and increase efficiency for genetic test facilitation. The GTAC unit includes genetic counselors, genetic counseling assistants, genetic nurses, and a medical geneticist. Patients receive abbreviated point-of-care genetic counseling and testing through a partnership with subspecialty providers. RESULTS: Implementation of PRaUD began in 2018 and GTAC unit launched in 2020 to support program expansion. Currently, 29 RD clinical indications are included in 11 specialty divisions/departments with over 142 referring providers. To date, 1152 patients have been evaluated with an overall solved or likely solved rate of 17.5% and as high as 66.7% depending on the phenotype. Noteworthy, 42.7% of the solved or likely solved patients underwent changes in medical management and outcome based on genetic test results. CONCLUSION: Implementation of PRaUD and GTAC have enabled subspecialty practices advance expertise in RD where genetic counselors have not historically been embedded in practice. Democratizing access to genetic testing and counseling can broaden the reach of patients with RD and increase the diagnostic yield of such indications leading to better medical management as well as expanding research opportunities.


Asunto(s)
Enfermedades Raras , Enfermedades no Diagnosticadas , Estados Unidos , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Enfermedades Raras/terapia , Atención Terciaria de Salud , Medicina Genómica , Pruebas Genéticas , Asesoramiento Genético
4.
J Med Genet ; 59(9): 865-877, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34815299

RESUMEN

BACKGROUND: Musculocontractural Ehlers-Danlos syndrome is caused by biallelic loss-of-function variants in CHST14 (mcEDS-CHST14) or DSE (mcEDS-DSE). Although 48 patients in 33 families with mcEDS-CHST14 have been reported, the spectrum of pathogenic variants, accurate prevalence of various manifestations and detailed natural history have not been systematically investigated. METHODS: We collected detailed and comprehensive clinical and molecular information regarding previously reported and newly identified patients with mcEDS-CHST14 through international collaborations. RESULTS: Sixty-six patients in 48 families (33 males/females; 0-59 years), including 18 newly reported patients, were evaluated. Japanese was the predominant ethnicity (27 families), associated with three recurrent variants. No apparent genotype-phenotype correlation was noted. Specific craniofacial (large fontanelle with delayed closure, downslanting palpebral fissures and hypertelorism), skeletal (characteristic finger morphologies, joint hypermobility, multiple congenital contractures, progressive talipes deformities and recurrent joint dislocation), cutaneous (hyperextensibility, fine/acrogeria-like/wrinkling palmar creases and bruisability) and ocular (refractive errors) features were observed in most patients (>90%). Large subcutaneous haematomas, constipation, cryptorchidism, hypotonia and motor developmental delay were also common (>80%). Median ages at the initial episode of dislocation or large subcutaneous haematoma were both 6 years. Nine patients died; their median age was 12 years. Several features, including joint and skin characteristics (hypermobility/extensibility and fragility), were significantly more frequent in patients with mcEDS-CHST14 than in eight reported patients with mcEDS-DSE. CONCLUSION: This first international collaborative study of mcEDS-CHST14 demonstrated that the subtype represents a multisystem disorder with unique set of clinical phenotypes consisting of multiple malformations and progressive fragility-related manifestations; these require lifelong, multidisciplinary healthcare approaches.


Asunto(s)
Anomalías Múltiples , Síndrome de Ehlers-Danlos , Anomalías Múltiples/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Fenotipo , Sulfotransferasas/genética
5.
Am J Hum Genet ; 105(6): 1237-1253, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31785787

RESUMEN

We report an early-onset autosomal-recessive neurological disease with cerebellar atrophy and lysosomal dysfunction. We identified bi-allelic loss-of-function (LoF) variants in Oxidative Resistance 1 (OXR1) in five individuals from three families; these individuals presented with a history of severe global developmental delay, current intellectual disability, language delay, cerebellar atrophy, and seizures. While OXR1 is known to play a role in oxidative stress resistance, its molecular functions are not well established. OXR1 contains three conserved domains: LysM, GRAM, and TLDc. The gene encodes at least six transcripts, including some that only consist of the C-terminal TLDc domain. We utilized Drosophila to assess the phenotypes associated with loss of mustard (mtd), the fly homolog of OXR1. Strong LoF mutants exhibit late pupal lethality or pupal eclosion defects. Interestingly, although mtd encodes 26 transcripts, severe LoF and null mutations can be rescued by a single short human OXR1 cDNA that only contains the TLDc domain. Similar rescue is observed with the TLDc domain of NCOA7, another human homolog of mtd. Loss of mtd in neurons leads to massive cell loss, early death, and an accumulation of aberrant lysosomal structures, similar to what we observe in fibroblasts of affected individuals. Our data indicate that mtd and OXR1 are required for proper lysosomal function; this is consistent with observations that NCOA7 is required for lysosomal acidification.


Asunto(s)
Atrofia/patología , Enfermedades Cerebelosas/patología , Lisosomas/patología , Proteínas Mitocondriales/metabolismo , Enfermedades del Sistema Nervioso/patología , Estrés Oxidativo , Adolescente , Adulto , Animales , Atrofia/genética , Atrofia/metabolismo , Enfermedades Cerebelosas/genética , Enfermedades Cerebelosas/metabolismo , Niño , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lisosomas/metabolismo , Masculino , Proteínas Mitocondriales/genética , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Linaje , Fenotipo , Adulto Joven
6.
Am J Hum Genet ; 102(6): 1158-1168, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29861105

RESUMEN

ßIV spectrin links ankyrinG (AnkG) and clustered ion channels at axon initial segments (AISs) and nodes of Ranvier to the axonal cytoskeleton. Here, we report bi-allelic pathogenic SPTBN4 variants (three homozygous and two compound heterozygous) that cause a severe neurological syndrome that includes congenital hypotonia, intellectual disability, and motor axonal and auditory neuropathy. We introduced these variants into ßIV spectrin, expressed these in neurons, and found that 5/7 were loss-of-function variants disrupting AIS localization or abolishing phosphoinositide binding. Nerve biopsies from an individual with a loss-of-function variant had reduced nodal Na+ channels and no nodal KCNQ2 K+ channels. Modeling the disease in mice revealed that although ankyrinR (AnkR) and ßI spectrin can cluster Na+ channels and partially compensate for the loss of AnkG and ßIV spectrin at nodes of Ranvier, AnkR and ßI spectrin cannot cluster KCNQ2- and KCNQ3-subunit-containing K+ channels. Our findings define a class of spectrinopathies and reveal the molecular pathologies causing nervous-system dysfunction.


Asunto(s)
Axones/patología , Discapacidad Intelectual/genética , Enfermedad de la Neurona Motora/genética , Hipotonía Muscular/congénito , Hipotonía Muscular/genética , Proteínas del Tejido Nervioso/genética , Espectrina/genética , Alelos , Animales , Axones/metabolismo , Células COS , Niño , Preescolar , Chlorocebus aethiops , Femenino , Células HEK293 , Humanos , Lactante , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/fisiopatología , Lípidos , Masculino , Ratones Noqueados , Enfermedad de la Neurona Motora/complicaciones , Enfermedad de la Neurona Motora/fisiopatología , Hipotonía Muscular/complicaciones , Hipotonía Muscular/fisiopatología , Proteínas Mutantes/metabolismo , Mutación/genética , Ratas Sprague-Dawley
7.
Am J Hum Genet ; 102(5): 995-1007, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29656858

RESUMEN

Developmental and epileptic encephalopathies (DEEs) represent a large clinical and genetic heterogeneous group of neurodevelopmental diseases. The identification of pathogenic genetic variants in DEEs remains crucial for deciphering this complex group and for accurately caring for affected individuals (clinical diagnosis, genetic counseling, impacting medical, precision therapy, clinical trials, etc.). Whole-exome sequencing and intensive data sharing identified a recurrent de novo PACS2 heterozygous missense variant in 14 unrelated individuals. Their phenotype was characterized by epilepsy, global developmental delay with or without autism, common cerebellar dysgenesis, and facial dysmorphism. Mixed focal and generalized epilepsy occurred in the neonatal period, controlled with difficulty in the first year, but many improved in early childhood. PACS2 is an important PACS1 paralog and encodes a multifunctional sorting protein involved in nuclear gene expression and pathway traffic regulation. Both proteins harbor cargo(furin)-binding regions (FBRs) that bind cargo proteins, sorting adaptors, and cellular kinase. Compared to the defined PACS1 recurrent variant series, individuals with PACS2 variant have more consistently neonatal/early-infantile-onset epilepsy that can be challenging to control. Cerebellar abnormalities may be similar but PACS2 individuals exhibit a pattern of clear dysgenesis ranging from mild to severe. Functional studies demonstrated that the PACS2 recurrent variant reduces the ability of the predicted autoregulatory domain to modulate the interaction between the PACS2 FBR and client proteins, which may disturb cellular function. These findings support the causality of this recurrent de novo PACS2 heterozygous missense in DEEs with facial dysmorphim and cerebellar dysgenesis.


Asunto(s)
Enfermedades Cerebelosas/genética , Epilepsia Generalizada/genética , Facies , Mutación Missense/genética , Proteínas de Transporte Vesicular/genética , Edad de Inicio , Preescolar , Femenino , Heterocigoto , Humanos , Lactante , Recién Nacido , Masculino , Fenotipo
8.
Hum Mutat ; 41(8): 1425-1434, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32442335

RESUMEN

LARS2 variants are associated with Perrault syndrome, characterized by premature ovarian failure and hearing loss, and with an infantile lethal multisystem disorder: Hydrops, lactic acidosis, sideroblastic anemia (HLASA) in one individual. Recently we reported LARS2 deafness with (ovario) leukodystrophy. Here we describe five patients with a range of phenotypes, in whom we identified biallelic LARS2 variants: three patients with a HLASA-like phenotype, an individual with Perrault syndrome whose affected siblings also had leukodystrophy, and an individual with a reversible mitochondrial myopathy, lactic acidosis, and developmental delay. Three HLASA cases from two unrelated families were identified. All were males with genital anomalies. Two survived multisystem disease in the neonatal period; both have developmental delay and hearing loss. A 55-year old male with deafness has not displayed neurological symptoms while his female siblings with Perrault syndrome developed leukodystrophy and died in their 30s. Analysis of muscle from a child with a reversible myopathy showed reduced LARS2 and mitochondrial complex I levels, and an unusual form of degeneration. Analysis of recombinant LARS2 variant proteins showed they had reduced aminoacylation efficiency, with HLASA-associated variants having the most severe effect. A broad phenotypic spectrum should be considered in association with LARS2 variants.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Disgenesia Gonadal 46 XX/genética , Pérdida Auditiva Sensorineural/genética , Miopatías Mitocondriales/genética , Acidosis Láctica/genética , Adulto , Anemia Sideroblástica/genética , Edema/genética , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fenotipo , Estructura Terciaria de Proteína
9.
PLoS Genet ; 13(7): e1006905, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28742085

RESUMEN

Dominant mutations in CACNA1A, encoding the α-1A subunit of the neuronal P/Q type voltage-dependent Ca2+ channel, can cause diverse neurological phenotypes. Rare cases of markedly severe early onset developmental delay and congenital ataxia can be due to de novo CACNA1A missense alleles, with variants affecting the S4 transmembrane segments of the channel, some of which are reported to be loss-of-function. Exome sequencing in five individuals with severe early onset ataxia identified one novel variant (p.R1673P), in a girl with global developmental delay and progressive cerebellar atrophy, and a recurrent, de novo p.R1664Q variant, in four individuals with global developmental delay, hypotonia, and ophthalmologic abnormalities. Given the severity of these phenotypes we explored their functional impact in Drosophila. We previously generated null and partial loss-of-function alleles of cac, the homolog of CACNA1A in Drosophila. Here, we created transgenic wild type and mutant genomic rescue constructs with the two noted conserved point mutations. The p.R1673P mutant failed to rescue cac lethality, displayed a gain-of-function phenotype in electroretinograms (ERG) recorded from mutant clones, and evolved a neurodegenerative phenotype in aging flies, based on ERGs and transmission electron microscopy. In contrast, the p.R1664Q variant exhibited loss of function and failed to develop a neurodegenerative phenotype. Hence, the novel R1673P allele produces neurodegenerative phenotypes in flies and human, likely due to a toxic gain of function.


Asunto(s)
Alelos , Canales de Calcio/genética , Ataxia Cerebelosa/genética , Genoma Humano , Enfermedades Neurodegenerativas/genética , Animales , Animales Modificados Genéticamente , Ataxia Cerebelosa/diagnóstico por imagen , Niño , Preescolar , Drosophila melanogaster/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Microscopía Electrónica de Transmisión , Mutación Missense , Neuroimagen , Fenotipo , Mutación Puntual
10.
Pediatr Hematol Oncol ; 37(5): 431-437, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32166993

RESUMEN

D-2-hydroxyglutaric aciduria (D-2-HGA) is a rare metabolic disorder characterized by developmental delay, hypotonia, and bi-allelic mutations in D-2-hydroxyglutarate dehydrogenase (D2HGDH) or a single gain-of-function mutation in isocitrate dehydrogenase 2 (IDH2). Metaphyseal chondromatosis with D-2-hydroxyglutaric aciduria (MC-HGA) is a type of D-2-HGA that has been previously reported in ten patients (OMIM 614875), three of whom had somatic mosaicism for R132 variants in isocitrate dehydrogenase 1 (IDH1). We describe a 3-year-old boy with MC-HGA who subsequently developed acute myeloid leukemia (AML) and was found to have an IDH1 R132C mutation in a leukemic bone marrow sample. Further testing revealed presence of somatic mosaicism for IDH1 R132C variant, suggesting an association of IDH1 in inducing myeloid leukemogenesis.


Asunto(s)
Encefalopatías Metabólicas Innatas/genética , Condromatosis/genética , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Encefalopatías Metabólicas Innatas/complicaciones , Preescolar , Condromatosis/complicaciones , Condromatosis/tratamiento farmacológico , Trasplante de Células Madre Hematopoyéticas , Humanos , Leucemia Mieloide Aguda/complicaciones , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Mutación , Resultado del Tratamiento
12.
Genet Med ; 21(11): 2663, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31267042

RESUMEN

In the Acknowledgements section of the paper the authors neglected to mention that the study was supported by a grant from the National Human Genome Research Institute (NHGRI) UM1HG007301 (S.H., M.L.T.). In addition, the award of MD was associated with the authors Michelle L. Thompson and Susan Hiatt instead of PhD. The PDF and HTML versions of the Article have been modified accordingly.

13.
Genet Med ; 21(12): 2713-2722, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31155615

RESUMEN

PURPOSE: Mediator is a multiprotein complex that allows the transfer of genetic information from DNA binding proteins to the RNA polymerase II during transcription initiation. MED12L is a subunit of the kinase module, which is one of the four subcomplexes of the mediator complex. Other subunits of the kinase module have been already implicated in intellectual disability, namely MED12, MED13L, MED13, and CDK19. METHODS: We describe an international cohort of seven affected individuals harboring variants involving MED12L identified by array CGH, exome or genome sequencing. RESULTS: All affected individuals presented with intellectual disability and/or developmental delay, including speech impairment. Other features included autism spectrum disorder, aggressive behavior, corpus callosum abnormality, and mild facial morphological features. Three individuals had a MED12L deletion or duplication. The other four individuals harbored single-nucleotide variants (one nonsense, one frameshift, and two splicing variants). Functional analysis confirmed a moderate and significant alteration of RNA synthesis in two individuals. CONCLUSION: Overall data suggest that MED12L haploinsufficiency is responsible for intellectual disability and transcriptional defect. Our findings confirm that the integrity of this kinase module is a critical factor for neurological development.


Asunto(s)
Discapacidad Intelectual/genética , Complejo Mediador/genética , Complejo Mediador/metabolismo , Adolescente , Trastorno del Espectro Autista/genética , Niño , Preescolar , Discapacidades del Desarrollo/genética , Exoma/genética , Femenino , Mutación del Sistema de Lectura/genética , Humanos , Masculino , Mutación/genética , Eliminación de Secuencia/genética , Factores de Transcripción/genética , Adulto Joven
14.
J Inherit Metab Dis ; 42(2): 264-275, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30689204

RESUMEN

Mitochondrial aconitase is the second enzyme in the tricarboxylic acid (TCA) cycle catalyzing the interconversion of citrate into isocitrate and encoded by the nuclear gene ACO2. A homozygous pathogenic variant in the ACO2 gene was initially described in 2012 resulting in a novel disorder termed "infantile cerebellar retinal degeneration" (ICRD, OMIM#614559). Subsequently, additional studies reported patients with pathogenic ACO2 variants, further expanding the genetic and clinical spectrum of this disorder to include milder and later onset manifestations. Here, we report an international multicenter cohort of 16 patients (of whom 7 are newly diagnosed) with biallelic pathogenic variants in ACO2 gene. Most patients present in early infancy with severe truncal hypotonia, truncal ataxia, variable seizures, evolving microcephaly, and ophthalmological abnormalities of which the most dominant are esotropia and optic atrophy with later development of retinal dystrophy. Most patients remain nonambulatory and do no acquire any language, but a subgroup of patients share a more favorable course. Brain magnetic resonance imaging (MRI) is typically normal within the first months but global atrophy gradually develops affecting predominantly the cerebellum. Ten of our patients were homozygous to the previously reported c.336C>G founder mutation while the other six patients were all compound heterozygotes displaying 10 novel mutations of whom 2 were nonsense predicting a deleterious effect on enzyme function. Structural protein modeling predicted significant impairment in aconitase substrate binding in the additional missense mutations. This study provides the most extensive cohort of patients and further delineates the clinical, radiological, biochemical, and molecular features of ACO2 deficiency.


Asunto(s)
Aconitato Hidratasa/deficiencia , Enfermedades Neurodegenerativas/diagnóstico , Atrofia Óptica/diagnóstico , Distrofias Retinianas/diagnóstico , Aconitato Hidratasa/genética , Adolescente , Ataxia/genética , Cerebelo/patología , Niño , Preescolar , Ciclo del Ácido Cítrico , Exoma/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Internacionalidad , Imagen por Resonancia Magnética , Masculino , Microcefalia/genética , Mutación Missense , Enfermedades Neurodegenerativas/genética , Atrofia Óptica/genética , Distrofias Retinianas/genética , Síndrome , Adulto Joven
15.
Genet Med ; 20(4): 470-473, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28837159

RESUMEN

PurposeThe Genomic Oligoarray and SNP Array Evaluation Tool 3.0 matches candidate genes within regions of homozygosity with a patient's phenotype, by mining OMIM for gene entries that contain a Clinical Synopsis. However, the tool cannot identify genes/disorders whose OMIM entries lack a descriptor of the mode of (Mendelian) inheritance. This study aimed to improve the tool's diagnostic power by building a database of autosomal recessive diseases not diagnosable through OMIM.MethodsWe extracted a list of all genes in OMIM that produce disease phenotypes but lack Clinical Synopses or other statements of mode of inheritance. We then searched PubMed for literature regarding each gene in order to infer its inheritance pattern.ResultsWe analyzed 1,392 genes. Disorders associated with 372 genes were annotated as recessive and 430 as dominant. Autosomal genes were ranked from 1 to 3, with 3 indicating the strongest evidence behind the inferred mode of inheritance. Of 834 autosomal genes, 158 were ranked as 1, 228 as 2, and 448 as 3.ConclusionThe 372 genes associated with recessive disorders will be contributed to the SNP array tool, and the entire database to OMIM. We anticipate that these findings will be useful in rare disease diagnostics.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Patrón de Herencia , Genómica/métodos , Genotipo , Humanos , Anotación de Secuencia Molecular , Fenotipo
16.
Am J Hum Genet ; 95(5): 579-83, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25439098

RESUMEN

5q31.3 microdeletion syndrome is characterized by neonatal hypotonia, encephalopathy with or without epilepsy, and severe developmental delay, and the minimal critical deletion interval harbors three genes. We describe 11 individuals with clinical features of 5q31.3 microdeletion syndrome and de novo mutations in PURA, encoding transcriptional activator protein Pur-α, within the critical region. These data implicate causative PURA mutations responsible for the severe neurological phenotypes observed in this syndrome.


Asunto(s)
Anomalías Múltiples/genética , Deleción Cromosómica , Cromosomas Humanos Par 5/genética , Proteínas de Unión al ADN/genética , Hipotonía Muscular/genética , Convulsiones/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Mapeo Cromosómico , Humanos , Datos de Secuencia Molecular , Mutación/genética , Análisis de Secuencia de ADN , Síndrome
19.
Pediatr Blood Cancer ; 64(9)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28453180

RESUMEN

VPS45-associated severe congenital neutropenia (SCN) is a rare disorder characterized by life-threating infections, neutropenia, neutrophil and platelet dysfunction, poor response to filgrastim, and myelofibrosis with extramedullary hematopoiesis. We present a patient with SCN due to a homozygous c.1403C>T (p.P468L) mutation in VPS45, critical regulator of SNARE-dependent membrane fusion. Structural modeling indicates that P468, like the T224 and E238 residues affected by previously reported mutations, cluster in a VPS45 "hinge" region, indicating its critical role in membrane fusion and VPS45-associated SCN. Bone marrow transplantation, complicated by early graft failure rescued with stem cell boost, led to resolution of the hematopoietic phenotype.


Asunto(s)
Neutropenia/congénito , Mielofibrosis Primaria/genética , Proteínas de Transporte Vesicular/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Femenino , Homocigoto , Humanos , Recién Nacido , Mutación , Neutropenia/genética
20.
Proc Natl Acad Sci U S A ; 111(11): 4197-202, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24591628

RESUMEN

Signaling through the store-operated Ca(2+) release-activated Ca(2+) (CRAC) channel regulates critical cellular functions, including gene expression, cell growth and differentiation, and Ca(2+) homeostasis. Loss-of-function mutations in the CRAC channel pore-forming protein ORAI1 or the Ca(2+) sensing protein stromal interaction molecule 1 (STIM1) result in severe immune dysfunction and nonprogressive myopathy. Here, we identify gain-of-function mutations in the cytoplasmic domain of STIM1 (p.R304W) associated with thrombocytopenia, bleeding diathesis, miosis, and tubular myopathy in patients with Stormorken syndrome, and in ORAI1 (p.P245L), associated with a Stormorken-like syndrome of congenital miosis and tubular aggregate myopathy but without hematological abnormalities. Heterologous expression of STIM1 p.R304W results in constitutive activation of the CRAC channel in vitro, and spontaneous bleeding accompanied by reduced numbers of thrombocytes in zebrafish embryos, recapitulating key aspects of Stormorken syndrome. p.P245L in ORAI1 does not make a constitutively active CRAC channel, but suppresses the slow Ca(2+)-dependent inactivation of the CRAC channel, thus also functioning as a gain-of-function mutation. These data expand our understanding of the phenotypic spectrum of dysregulated CRAC channel signaling, advance our knowledge of the molecular function of the CRAC channel, and suggest new therapies aiming at attenuating store-operated Ca(2+) entry in the treatment of patients with Stormorken syndrome and related pathologic conditions.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas/genética , Canales de Calcio/genética , Señalización del Calcio/genética , Dislexia/genética , Ictiosis/genética , Proteínas de la Membrana/genética , Trastornos Migrañosos/genética , Miosis/genética , Miopatías Estructurales Congénitas/genética , Proteínas de Neoplasias/genética , Bazo/anomalías , Animales , Secuencia de Bases , Niño , Cartilla de ADN/genética , Eritrocitos Anormales , Femenino , Humanos , Datos de Secuencia Molecular , Fatiga Muscular/genética , Mutagénesis Sitio-Dirigida , Mutación/genética , Proteína ORAI1 , Técnicas de Placa-Clamp , Linaje , Análisis de Secuencia de ADN , Molécula de Interacción Estromal 1 , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA