Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 8(9): e1002974, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028372

RESUMEN

Budding yeast centromeres are sequence-defined point centromeres and are, unlike in many other organisms, not embedded in heterochromatin. Here we show that Fun30, a poorly understood SWI/SNF-like chromatin remodeling factor conserved in humans, promotes point centromere function through the formation of correct chromatin architecture at centromeres. Our determination of the genome-wide binding and nucleosome positioning properties of Fun30 shows that this enzyme is consistently enriched over centromeres and that a majority of CENs show Fun30-dependent changes in flanking nucleosome position and/or CEN core micrococcal nuclease accessibility. Fun30 deletion leads to defects in histone variant Htz1 occupancy genome-wide, including at and around most centromeres. FUN30 genetically interacts with CSE4, coding for the centromere-specific variant of histone H3, and counteracts the detrimental effect of transcription through centromeres on chromosome segregation and suppresses transcriptional noise over centromere CEN3. Previous work has shown a requirement for fission yeast and mammalian homologs of Fun30 in heterochromatin assembly. As centromeres in budding yeast are not embedded in heterochromatin, our findings indicate a direct role of Fun30 in centromere chromatin by promoting correct chromatin architecture.


Asunto(s)
Centrómero/genética , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Heterocromatina/genética , Histonas/genética , Humanos , Cinetocoros , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Curr Opin Microbiol ; 55: 1-8, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32044654

RESUMEN

Gene duplication facilitates the evolution of biological complexity, as one copy of a gene retains its original function while a duplicate copy can acquire mutations that would otherwise diminish fitness. Duplication has played a particularly important role in the evolution of regulatory networks by permitting novel regulatory interactions and responses to stimuli. The diverse MarR family of transcription factors (MFTFs) illustrate this concept, ranging from highly specific repressors of single operons to pleiotropic global regulators controlling hundreds of genes. MFTFs are often genetically and functionally linked to antimicrobial efflux systems. However, the SlyA MFTF lineage in the Enterobacteriaceae plays little or no role in regulating efflux but rather functions as transcriptional counter-silencers, which alleviate xenogeneic silencing of horizontally acquired genes and facilitate bacterial evolution by horizontal gene transfer. This review will explore recent advances in our understanding of MFTF traits that have contributed to their functional evolution.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Familia de Multigenes , Factores de Transcripción/genética , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Escherichia coli/genética , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA