Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
PLoS Pathog ; 17(6): e1009475, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34107000

RESUMEN

Tsetse flies are vectors of parasitic African trypanosomes, the etiological agents of human and animal African trypanosomoses. Current disease control methods include fly-repelling pesticides, fly trapping, and chemotherapeutic treatment of infected people and animals. Inhibiting tsetse's ability to transmit trypanosomes by strengthening the fly's natural barriers can serve as an alternative approach to reduce disease. The peritrophic matrix (PM) is a chitinous and proteinaceous barrier that lines the insect midgut and serves as a protective barrier that inhibits infection with pathogens. African trypanosomes must cross tsetse's PM in order to establish an infection in the fly, and PM structural integrity negatively correlates with trypanosome infection outcomes. Bloodstream form trypanosomes shed variant surface glycoproteins (VSG) into tsetse's gut lumen early during the infection establishment, and free VSG molecules are internalized by the fly's PM-producing cardia. This process results in a reduction in the expression of a tsetse microRNA (miR275) and a sequential molecular cascade that compromises PM integrity. miRNAs are small non-coding RNAs that are critical in regulating many physiological processes. In the present study, we investigated the role(s) of tsetse miR275 by developing a paratransgenic expression system that employs tsetse's facultative bacterial endosymbiont, Sodalis glossinidius, to express tandem antagomir-275 repeats (or miR275 sponges). This system induces a constitutive, 40% reduction in miR275 transcript abundance in the fly's midgut and results in obstructed blood digestion (gut weights increased by 52%), a significant increase (p-value < 0.0001) in fly survival following infection with an entomopathogenic bacteria, and a 78% increase in trypanosome infection prevalence. RNA sequencing of cardia and midgut tissues from paratransgenic tsetse confirmed that miR275 regulates processes related to the expression of PM-associated proteins and digestive enzymes as well as genes that encode abundant secretory proteins. Our study demonstrates that paratransgenesis can be employed to study microRNA regulated pathways in arthropods that house symbiotic bacteria.


Asunto(s)
Homeostasis/fisiología , Intestinos/fisiología , MicroARNs/genética , Tripanosomiasis Africana/parasitología , Moscas Tse-Tse/genética , Moscas Tse-Tse/parasitología , Animales , Animales Modificados Genéticamente , Microbioma Gastrointestinal/fisiología , Genes de Insecto , Insectos Vectores/genética , Insectos Vectores/parasitología , Trypanosoma
2.
Proc Natl Acad Sci U S A ; 117(5): 2597-2605, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31969456

RESUMEN

The surface protein Pfs47 allows Plasmodium falciparum parasites to survive and be transmitted by making them "undetectable" to the mosquito immune system. P. falciparum parasites express Pfs47 haplotypes compatible with their sympatric vectors, while those with incompatible haplotypes are eliminated by the mosquito. We proposed that Pfs47 serves as a "key" that mediates immune evasion by interacting with a mosquito receptor "the lock," which differs in evolutionarily divergent anopheline mosquitoes. Recombinant Pfs47 (rPfs47) was used to identify the mosquito Pfs47 receptor protein (P47Rec) using far-Western analysis. rPfs47 bound to a single 31-kDa band and the identity of this protein was determined by mass spectrometry. The mosquito P47Rec has two natterin-like domains and binds to Pfs47 with high affinity (17 to 32 nM). P47Rec is a highly conserved protein with submicrovillar localization in midgut cells. It has structural homology to a cytoskeleton-interacting protein and accumulates at the site of ookinete invasion. Silencing P47Rec expression reduced P. falciparum infection, indicating that the interaction of Pfs47 with the receptor is critical for parasite survival. The binding specificity of P47Rec from distant anophelines (Anopheles gambiae, Anopheles dirus, and Anopheles albimanus) with Pfs47-Africa (GB4) and Pfs47-South America (7G8) haplotypes was evaluated, and it is in agreement with the previously documented compatibility between P. falciparum parasites expressing different Pfs47 haplotypes and these three anopheline species. Our findings give further support to the role of Pfs47 in the adaptation of P. falciparum to different vectors.


Asunto(s)
Anopheles/inmunología , Anopheles/parasitología , Proteínas de Insectos/inmunología , Glicoproteínas de Membrana/inmunología , Mosquitos Vectores/inmunología , Mosquitos Vectores/parasitología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Animales , Anopheles/genética , Interacciones Huésped-Parásitos , Evasión Inmune , Proteínas de Insectos/genética , Cinética , Glicoproteínas de Membrana/genética , Mosquitos Vectores/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
3.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34884537

RESUMEN

The PIWI-interacting RNA (piRNA) pathway provides an RNA interference (RNAi) mechanism known from Drosophila studies to maintain the integrity of the germline genome by silencing transposable elements (TE). Aedes aegypti mosquitoes, which are the key vectors of several arthropod-borne viruses, exhibit an expanded repertoire of Piwi proteins involved in the piRNA pathway, suggesting functional divergence. Here, we investigate RNA-binding dynamics and subcellular localization of A. aegypti Piwi4 (AePiwi4), a Piwi protein involved in antiviral immunity and embryonic development, to better understand its function. We found that AePiwi4 PAZ (Piwi/Argonaute/Zwille), the domain that binds the 3' ends of piRNAs, bound to mature (3' 2' O-methylated) and unmethylated RNAs with similar micromolar affinities (KD = 1.7 ± 0.8 µM and KD of 5.0 ± 2.2 µM, respectively; p = 0.05) in a sequence independent manner. Through site-directed mutagenesis studies, we identified highly conserved residues involved in RNA binding and found that subtle changes in the amino acids flanking the binding pocket across PAZ proteins have significant impacts on binding behaviors, likely by impacting the protein secondary structure. We also analyzed AePiwi4 subcellular localization in mosquito tissues. We found that the protein is both cytoplasmic and nuclear, and we identified an AePiwi4 nuclear localization signal (NLS) in the N-terminal region of the protein. Taken together, these studies provide insights on the dynamic role of AePiwi4 in RNAi and pave the way for future studies aimed at understanding Piwi interactions with diverse RNA populations.


Asunto(s)
Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Núcleo Celular/metabolismo , Elementos Transponibles de ADN , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , ARN Interferente Pequeño/metabolismo , Aedes , Secuencia de Aminoácidos , Animales , Proteínas Argonautas/genética , Núcleo Celular/genética , Proteínas de Insectos/genética , Mosquitos Vectores , Conformación Proteica , ARN Interferente Pequeño/genética , Homología de Secuencia
4.
Insect Biochem Mol Biol ; 167: 104097, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428508

RESUMEN

Mosquito vectors of medical importance both blood and sugar feed, and their saliva contains bioactive molecules that aid in both processes. Although it has been shown that the salivary glands of several mosquito species exhibit α-glucosidase activities, the specific enzymes responsible for sugar digestion remain understudied. We therefore expressed and purified three recombinant salivary α-glucosidases from the mosquito vectors Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus and compared their functions and structures. We found that all three enzymes were expressed in the salivary glands of their respective vectors and were secreted into the saliva. The proteins, as well as mosquito salivary gland extracts, exhibited α-glucosidase activity, and the recombinant enzymes displayed preference for sucrose compared to p-nitrophenyl-α-D-glucopyranoside. Finally, we solved the crystal structure of the Ae. aegypti α-glucosidase bound to two calcium ions at a 2.3 Ångstrom resolution. Molecular docking suggested that the Ae. aegypti α-glucosidase preferred di- or polysaccharides compared to monosaccharides, consistent with enzymatic activity assays. Comparing structural models between the three species revealed a high degree of similarity, suggesting similar functional properties. We conclude that the α-glucosidases studied herein are important enzymes for sugar digestion in three mosquito species.


Asunto(s)
Aedes , Anopheles , Culex , Animales , Mosquitos Vectores/genética , alfa-Glucosidasas/genética , Aedes/genética , Anopheles/genética , Simulación del Acoplamiento Molecular , Culex/genética , Azúcares
5.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895463

RESUMEN

The mosquito Aedes aegypti is a prominent vector for arboviruses, but the breadth of mosquito viruses that infects this specie is not fully understood. In the broadest global survey to date of over 200 Ae. aegypti small RNA samples, we detected viral small interfering RNAs (siRNAs) and Piwi interacting RNAs (piRNAs) arising from mosquito viruses. We confirmed that most academic laboratory colonies of Ae. aegypti lack persisting viruses, yet two commercial strains were infected by a novel tombus-like virus. Ae. aegypti from North to South American locations were also teeming with multiple insect viruses, with Anphevirus and a bunyavirus displaying geographical boundaries from the viral small RNA patterns. Asian Ae. aegypti small RNA patterns indicate infections by similar mosquito viruses from the Americas and reveal the first wild example of dengue virus infection generating viral small RNAs. African Ae. aegypti also contained various viral small RNAs including novel viruses only found in these African substrains. Intriguingly, viral long RNA patterns can differ from small RNA patterns, indicative of viral transcripts evading the mosquitoes' RNA interference (RNAi) machinery. To determine whether the viruses we discovered via small RNA sequencing were replicating and transmissible, we infected C6/36 and Aag2 cells with Ae. aegypti homogenates. Through blind passaging, we generated cell lines stably infected by these mosquito viruses which then generated abundant viral siRNAs and piRNAs that resemble the native mosquito viral small RNA patterns. This mosquito small RNA genomics approach augments surveillance approaches for emerging infectious diseases.

6.
Cold Spring Harb Protoc ; 2023(6): pdb.prot108023, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36690389

RESUMEN

Female mosquitoes need vertebrate blood for egg development. Evaluating mosquito behavior is essential for determining the ability of a mosquito to blood feed. Blood feeding experiments are often performed using artificial membrane feeders; however, such experiments do not represent realistic scenarios in which a mosquito injects saliva into the host to prevent host hemostatic responses. Vertebrate animal models are therefore more representative of a natural blood feeding event. Here, we describe a methodology to evaluate mosquito blood feeding success that can be used to compare blood feeding between mosquito groups-for instance, wild-type versus transgenic mosquitoes lacking salivary proteins or field-collected versus laboratory-reared mosquitoes. We also include a simple procedure to measure blood meal size, allowing for a more quantitative assessment of feeding status. The volume of ingested blood directly affects mosquito fecundity and fertility, important markers of fitness. The methods described herein can be used to evaluate transmission-blocking vaccines, insecticides, or fitness costs associated with transgenic mosquitoes.


Asunto(s)
Aedes , Animales , Femenino , Aedes/genética , Conducta Alimentaria/fisiología , Animales Modificados Genéticamente
7.
Cold Spring Harb Protoc ; 2023(6): pdb.prot108024, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36690390

RESUMEN

In mosquitoes, the intradermal search for vertebrate blood (probing time) corresponds to the time taken from initial insertion of the mouthparts in the skin until visualization of the initial engorgement of blood in the midgut. Probing time evaluation provides useful information on the ability of a mosquito to initiate successful blood feeding. In this protocol, we describe how to determine feeding parameters in Aedes aegypti, a widely distributed mosquito that transmits several deadly pathogens, including yellow fever, dengue, Zika, and Chikungunya viruses. We focus on the different steps of a blood feeding event, including penetration, probing, interprobing, and feeding time. Penetration time corresponds to the insertion of the stylets into the host skin and usually lasts <10 sec. Probing time or intradermal search for blood involves saliva secretion into the skin. Some researchers group penetration and probing time as the exploratory phase for blood. Feeding time is an active phase of blood ingestion and engorgement. Feeding parameters depend on mosquito behaviors and these measurements are visually taken by the investigator. We include a video that provides a close look at a mosquito feeding event in which penetration, probing, and feeding times can be observed. To record these experimental times, one must closely watch the mosquito feeding behavior including stylet penetration in the host skin, visualization of the first traces of blood in the midgut, engorgement of the midgut, and removal of stylets from the skin.


Asunto(s)
Aedes , Infección por el Virus Zika , Virus Zika , Animales , Ratones
8.
Cold Spring Harb Protoc ; 2023(6): pdb.top107659, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36669861

RESUMEN

Hematophagous arthropods are animals that feed on vertebrate blood for egg production. Mosquitoes must pierce the host skin, locate blood vessels, and extract blood without being noticed. Mosquito stylets lacerate host tissues, triggering the activation of the three branches of hemostasis, or stopping of blood flow: vasoconstriction, platelet aggregation, and coagulation. Mosquitoes inject saliva into the host skin during their intradermal search for blood (also called probing), and salivary proteins counteract hemostasis. Blood feeding dynamics have been traditionally described by observational studies, in which researchers using magnifying glasses watched mosquitoes in the act of blood feeding. These studies provided the foundation for protocols to evaluate mosquito blood feeding in a more quantitative manner. Here, we introduce mosquito blood feeding biology with a focus on the feeding steps, which include penetration, probing, and feeding. Understanding blood feeding dynamics is crucial for evaluating probing time and other relevant parameters derived from blood feeding, such as blood meal size, fecundity, and fertility. Other considerations, including the relationship between probing and pathogen transmission and novel technologies to address blood feeding, are also discussed.


Asunto(s)
Culicidae , Animales , Culicidae/fisiología , Saliva/metabolismo
9.
J Vis Exp ; (199)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37782092

RESUMEN

Transgenic mosquitoes often display fitness costs compared to their wild-type counterparts. In this regard, fitness cost studies involve collecting life parameter data from genetically modified mosquitoes and comparing them to mosquitoes lacking transgenes from the same genetic background. This manuscript illustrates how to measure common life history traits in the mosquito Aedes aegypti, including fecundity, wing size and shape, fertility, sex ratio, viability, development times, male contribution, and adult longevity. These parameters were chosen because they reflect reproductive success, are simple to measure, and are commonly reported in the literature. The representative results quantify fitness costs associated with either a gene knock-out or a single insertion of a gene drive element. Standardizing how life parameter data are collected is important because such data may be used to compare the health of transgenic mosquitoes generated across studies or to model the transgene fixation rate in a simulated wild-type mosquito population. Although this protocol is specific for transgenic Aedes aegypti, the protocol may also be used for other mosquito species or other experimental treatment conditions, with the caveat that certain biological contexts may require special adaptations.


Asunto(s)
Aedes , Animales , Masculino , Aedes/genética , Animales Modificados Genéticamente , Fertilidad , Reproducción , Transgenes
10.
Front Immunol ; 14: 1163367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469515

RESUMEN

Background: Salivary glands from blood-feeding arthropods secrete several molecules that inhibit mammalian hemostasis and facilitate blood feeding and pathogen transmission. The salivary functions from Simulium guianense, the main vector of Onchocerciasis in South America, remain largely understudied. Here, we have characterized a salivary protease inhibitor (Guianensin) from the blackfly Simulium guianense. Materials and methods: A combination of bioinformatic and biophysical analyses, recombinant protein production, in vitro and in vivo experiments were utilized to characterize the molecula mechanism of action of Guianensin. Kinetics of Guianensin interaction with proteases involved in vertebrate inflammation and coagulation were carried out by surface plasmon resonance and isothermal titration calorimetry. Plasma recalcification and coagulometry and tail bleeding assays were performed to understand the role of Guianensin in coagulation. Results: Guianensin was identified in the sialotranscriptome of adult S. guianense flies and belongs to the Kunitz domain of protease inhibitors. It targets various serine proteases involved in hemostasis and inflammation. Binding to these enzymes is highly specific to the catalytic site and is not detectable for their zymogens, the catalytic site-blocked human coagulation factor Xa (FXa), or thrombin. Accordingly, Guianensin significantly increased both PT (Prothrombin time) and aPTT (Activated partial thromboplastin time) in human plasma and consequently increased blood clotting time ex vivo. Guianensin also inhibited prothrombinase activity on endothelial cells. We show that Guianensin acts as a potent anti-inflammatory molecule on FXa-induced paw edema formation in mice. Conclusion: The information generated by this work highlights the biological functionality of Guianensin as an antithrombotic and anti-inflammatory protein that may play significant roles in blood feeding and pathogen transmission.


Asunto(s)
Hemostáticos , Simuliidae , Ratones , Humanos , Animales , Células Endoteliales , Hemostasis , Antiinflamatorios/farmacología , Inflamación , Proteínas y Péptidos Salivales/farmacología , Mamíferos
11.
mBio ; : e0228923, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37909749

RESUMEN

Mosquito saliva facilitates blood meal acquisition through pharmacologically active compounds that prevent host hemostasis and immune responses. Here, we generated two knockout (KO) mosquito lines by CRISPR/Cas9 to functionally characterize D7L1 and D7L2, two abundantly expressed salivary proteins from the yellow fever mosquito vector Aedes aegypti. The D7s bind and scavenge biogenic amines and eicosanoids involved in hemostasis at the bite site. The absence of D7 proteins in the salivary glands of KO mosquitoes was confirmed by mass spectrometry, enzyme-linked immunosorbent assay, and fluorescence microscopy of the salivary glands with specific antibodies. D7-KO mosquitoes had longer probing times than parental wildtypes. The differences in probing time were abolished when mutant mice resistant to inflammatory insults were used. These results confirmed the role of D7 proteins as leukotriene scavengers in vivo. We also investigated the role of D7 salivary proteins in Plasmodium gallinaceum infection and transmission. Both KO lines had significantly fewer oocysts per midgut. We hypothesize that the absence of D7 proteins in the midgut of KO mosquitoes might be responsible for creating a harsh environment for the parasite. The information generated by this work highlights the biological functionality of salivary gene products in blood feeding and pathogen infection. IMPORTANCE During blood feeding, mosquitoes inject saliva into the host skin, preventing hemostasis and inflammatory responses. D7 proteins are among the most abundant components of the saliva of blood-feeding arthropods. Aedes aegypti, the vector of yellow fever and dengue, expresses two D7 long-form salivary proteins: D7L1 and D7L2. These proteins bind and counteract hemostatic agonists such as biogenic amines and leukotrienes. D7L1 and D7L2 knockout mosquitoes showed prolonged probing times and carried significantly less Plasmodium gallinaceum oocysts per midgut than wild-type mosquitoes. We hypothesize that reingested D7s play a vital role in the midgut microenvironment with important consequences for pathogen infection and transmission.

12.
Cold Spring Harb Protoc ; 2022(10): Pdb.top107699, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35960615

RESUMEN

Studying protein localization in mosquito salivary glands provides novel insights on the function and physiological relevance of salivary proteins and also provides an avenue to study interactions between mosquitoes and pathogens. Salivary proteins display compartmentalization. For example, proteins involved in blood feeding are stored in the medial and distal lateral lobes, whereas proteins related to sugar metabolism localize to the proximal portion of the lateral lobes. Immunohistochemistry assays use antibodies raised against recombinant salivary proteins to reveal the protein localization and interactions within the tissue. In this assay, permeabilization of the salivary glands allows the antibodies to enter the cells and bind their target proteins. The primary antibody-antigen complexes are later marked with fluorescently labeled secondary antibodies. Antibodies that recognize pathogen-specific proteins can also be incorporated in these assays, providing information about pathogen localization within the salivary glands or pathogen interactions with mosquito salivary proteins. Here, we introduce immunohistochemistry assays for use in mosquito salivary glands.


Asunto(s)
Anopheles , Animales , Inmunohistoquímica , Glándulas Salivales/química , Glándulas Salivales/metabolismo , Proteínas y Péptidos Salivales/análisis , Proteínas y Péptidos Salivales/metabolismo , Azúcares/análisis , Azúcares/metabolismo
13.
Cold Spring Harb Protoc ; 2022(10): Pdb.prot107990, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35960629

RESUMEN

Immunohistochemistry is a valuable technique that provides information on protein localization and interactions in tissues. Mosquito salivary gland immunohistochemistry requires the meticulous dissection of a delicate tissue. The integrity of the salivary glands must be closely monitored throughout the entire process to prevent structural damage and loss of saliva. This protocol describes a series of simple steps to perform salivary gland immunohistochemistry including tissue dissection, permeabilization, immunostaining, mounting, and imaging by confocal microscopy.


Asunto(s)
Culicidae , Animales , Inmunohistoquímica , Saliva/química , Saliva/metabolismo , Glándulas Salivales/química , Glándulas Salivales/metabolismo
14.
G3 (Bethesda) ; 12(12)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36250791

RESUMEN

The yellow fever mosquito Aedes aegypti is a major vector of arthropod-borne viruses, including dengue, chikungunya, and Zika viruses. A novel approach to mitigate arboviral infections is to generate mosquitoes refractory to infection by overexpressing antiviral effector molecules. Such an approach requires a mechanism to spread these antiviral effectors through a population, for example, by using CRISPR/Cas9-based gene drive systems. Critical to the design of a single-locus autonomous gene drive is that the selected genomic locus is amenable to both gene drive and appropriate expression of the antiviral effector. In our study, we used reverse engineering to target 2 intergenic genomic loci, which had previously shown to be highly permissive for antiviral effector gene expression, and we further investigated the use of 3 promoters (nanos, ß2-tubulin, or zpg) for Cas9 expression. We then quantified the accrual of insertions or deletions (indels) after single-generation crossings, measured maternal effects, and assessed fitness costs associated with various transgenic lines to model the rate of gene drive fixation. Overall, MGDrivE modeling suggested that when an autonomous gene drive is placed into an intergenic locus, the gene drive system will eventually be blocked by the accrual of gene drive blocking resistance alleles and ultimately be lost in the population. Moreover, while genomic locus and promoter selection were critically important for the initial establishment of the autonomous gene drive, it was the fitness of the gene drive line that most strongly influenced the persistence of the gene drive in the simulated population. As such, we propose that when autonomous CRISPR/Cas9-based gene drive systems are anchored in an intergenic locus, they temporarily result in a strong population replacement effect, but as gene drive-blocking indels accrue, the gene drive becomes exhausted due to the fixation of CRISPR resistance alleles.


Asunto(s)
Aedes , Tecnología de Genética Dirigida , Infección por el Virus Zika , Virus Zika , Animales , Aedes/genética , Sistemas CRISPR-Cas/genética , Mosquitos Vectores/genética , Virus Zika/genética , Infección por el Virus Zika/genética
15.
Cell Rep ; 39(2): 110648, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417706

RESUMEN

Saliva from mosquitoes contains vasodilators that antagonize vasoconstrictors produced at the bite site. Sialokinin is a vasodilator present in the saliva of Aedes aegypti. Here, we investigate its function and describe its mechanism of action during blood feeding. Sialokinin induces nitric oxide release similar to substance P. Sialokinin-KO mosquitoes produce lower blood perfusion than parental mosquitoes at the bite site during probing and have significantly longer probing times, which result in lower blood feeding success. In contrast, there is no difference in feeding between KO and parental mosquitoes when using artificial membrane feeders or mice that are treated with a substance P receptor antagonist, confirming that sialokinin interferes with host hemostasis via NK1R signaling. While sialokinin-KO saliva does not affect virus infection in vitro, it stimulates macrophages and inhibits leukocyte recruitment in vivo. This work highlights the biological functionality of salivary proteins in blood feeding.


Asunto(s)
Aedes , Animales , Biología , Ratones , Saliva , Proteínas y Péptidos Salivales
16.
Bio Protoc ; 11(18): e4165, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34692914

RESUMEN

Aedes aegypti mosquitoes are the main vectors of many medically relevant arthropod-borne (arbo) viruses, including Zika (ZIKV), dengue (DENV), and yellow fever (YFV). Vector competence studies with Ae. aegypti often involve challenging mosquitoes with an artificial bloodmeal containing virus and later quantifying viral titer or infectious plaque-forming units (PFU) in various mosquito tissues at relevant time points post-infection. However, Ae. aegypti mosquitoes are known to exhibit midgut infection and escape barriers (MIB and MEB, respectively), which influence the prevalence and titer of a disseminated infection and can introduce unwanted variability into studies analyzing tissues such as the salivary glands. To surmount this challenge, we describe herein a protocol for the intrathoracic inoculation of ZIKV in Ae. aegypti. This method bypasses the midgut, which leads to a more rapid and higher proportion of disseminated infections in comparison to oral challenge, and mosquitoes become infected with a consistent dose of virus. Our protocol is advantageous for studies that need a large sample size of infected mosquitoes, need to bypass the midgut, or are analyzing salivary gland infection or escape barriers. Graphic abstract: Cartoon depiction of Aedes aegypti intrathoracic inoculation. Figure made with Biorender.com.

17.
Insects ; 11(1)2020 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-31940960

RESUMEN

The mosquito vector Aedes aegypti transmits arthropod-borne viruses (arboviruses) of medical importance, including Zika, dengue, and yellow fever viruses. Controlling mosquito populations remains the method of choice to prevent disease transmission. Novel mosquito control strategies based on genetically manipulating mosquitoes are being developed as additional tools to combat arbovirus transmission. Genetic control of mosquitoes includes two basic strategies: population suppression and population replacement. The former aims to eliminate mosquito populations while the latter aims to replace wild populations with engineered, pathogen-resistant mosquitoes. In this review, we outline suppression strategies being applied in the field, as well as current antiviral effector genes that have been characterized and expressed in transgenic Ae. aegypti for population replacement. We discuss cutting-edge gene drive technologies that can be used to enhance the inheritance of effector genes, while highlighting the challenges and opportunities associated with gene drives. Finally, we present currently available models that can estimate mosquito release numbers and time to transgene fixation for several gene drive systems. Based on the recent advances in genetic engineering, we anticipate that antiviral transgenic Ae. aegypti exhibiting gene drive will soon emerge; however, close monitoring in simulated field conditions will be required to demonstrate the efficacy and utility of such transgenic mosquitoes.

18.
Viruses ; 12(11)2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33142991

RESUMEN

The resurgence of arbovirus outbreaks across the globe, including the recent Zika virus (ZIKV) epidemic in 2015-2016, emphasizes the need for innovative vector control methods. In this study, we investigated ZIKV susceptibility to transgenic Aedes aegypti engineered to target the virus by means of the antiviral small-interfering RNA (siRNA) pathway. The robustness of antiviral effector expression in transgenic mosquitoes is strongly influenced by the genomic insertion locus and transgene copy number; we therefore used CRISPR/Cas9 to re-target a previously characterized locus (Chr2:321382225) and engineered mosquitoes expressing an inverted repeat (IR) dsRNA against the NS3/4A region of the ZIKV genome. Small RNA analysis revealed that the IR effector triggered the mosquito's siRNA antiviral pathway in bloodfed females. Nearly complete (90%) inhibition of ZIKV replication was found in vivo in both midguts and carcasses at 7 or 14 days post-infection (dpi). Furthermore, significantly fewer transgenic mosquitoes contained ZIKV in their salivary glands (p = 0.001), which led to a reduction in the number of ZIKV-containing saliva samples as measured by transmission assay. Our work shows that Ae. aegypti innate immunity can be co-opted to engineer mosquitoes resistant to ZIKV.


Asunto(s)
Aedes/virología , Resistencia a la Enfermedad/genética , Genoma Viral , ARN Interferente Pequeño/metabolismo , Virus Zika/genética , Aedes/genética , Animales , Animales Modificados Genéticamente/virología , Sistemas CRISPR-Cas , Susceptibilidad a Enfermedades/virología , Femenino , Masculino , Mosquitos Vectores/genética , Mosquitos Vectores/virología , ARN Interferente Pequeño/genética , Saliva/virología , Carga Viral , Replicación Viral , Virus Zika/fisiología , Infección por el Virus Zika/virología
19.
Sci Rep ; 9(1): 16833, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727945

RESUMEN

We recently characterized Pfs47, a protein expressed on the surface of sexual stages and ookinetes of Plasmodium falciparum, as a malaria transmission-blocking vaccine (TBV) target. Mice immunization induced antibodies that conferred strong transmission-reducing activity (TRA) at a concentration of 200 µg/mL. Here, we sought to optimize the Pfs47 vaccine to elicit higher titers of high-affinity antibodies, capable of inducing strong TRA at a lower concentration. We report the development and evaluation of a Pfs47-based virus-like particle (VLP) vaccine generated by conjugating our 58 amino acid Pfs47 antigen to Acinetobacter phage AP205-VLP using the SpyCatcher:SpyTag adaptor system. AP205-Pfs47 complexes (VLP-P47) formed particles of ~22 nm diameter that reacted with polyclonal anti-Pfs47 antibodies, indicating that the antigen was accessible on the surface of the particle. Mice immunized with VLP-P47 followed by a boost with Pfs47 monomer induced significantly higher antibody titers, with higher binding affinity to Pfs47, than mice that received two immunizations with either VLP-P47 (VLP-P47/VLP-P47) or the Pfs47 monomer (P47/P47). Purified IgG from VLP-P47/P47 mice had strong TRA (83-98%) at concentrations as low as 5 µg/mL. These results indicate that conjugating the Pfs47 antigen to AP205-VLP significantly enhanced antigenicity and confirm the potential of Pfs47 as a TBV candidate.


Asunto(s)
Anticuerpos Antiprotozoarios/metabolismo , Malaria Falciparum/prevención & control , Glicoproteínas de Membrana/inmunología , Proteínas Protozoarias/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Animales , Bacteriófagos/genética , Bacteriófagos/inmunología , Femenino , Inmunización Secundaria , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Masculino , Ratones , Vacunas de Partículas Similares a Virus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA