Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 143(2): 118-123, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37647647

RESUMEN

ABSTRACT: CD19-negative relapse is a leading cause of treatment failure after chimeric antigen receptor (CAR) T-cell therapy for acute lymphoblastic leukemia. We investigated a CAR T-cell product targeting CD19 and CD22 generated by lentiviral cotransduction with vectors encoding our previously described fast-off rate CD19 CAR (AUTO1) combined with a novel CD22 CAR capable of effective signaling at low antigen density. Twelve patients with advanced B-cell acute lymphoblastic leukemia were treated (CARPALL [Immunotherapy with CD19/22 CAR Redirected T Cells for High Risk/Relapsed Paediatric CD19+ and/or CD22+ Acute Lymphoblastic Leukaemia] study, NCT02443831), a third of whom had failed prior licensed CAR therapy. Toxicity was similar to that of AUTO1 alone, with no cases of severe cytokine release syndrome. Of 12 patients, 10 (83%) achieved a measurable residual disease (MRD)-negative complete remission at 2 months after infusion. Of 10 responding patients, 5 had emergence of MRD (n = 2) or relapse (n = 3) with CD19- and CD22-expressing disease associated with loss of CAR T-cell persistence. With a median follow-up of 8.7 months, there were no cases of relapse due to antigen-negative escape. Overall survival was 75% (95% confidence interval [CI], 41%-91%) at 6 and 12 months. The 6- and 12-month event-free survival rates were 75% (95% CI, 41%-91%) and 60% (95% CI, 23%-84%), respectively. These data suggest dual targeting with cotransduction may prevent antigen-negative relapse after CAR T-cell therapy.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Humanos , Niño , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos/genética , Recurrencia , Antígenos CD19 , Linfocitos T , Lectina 2 Similar a Ig de Unión al Ácido Siálico
2.
J Pharmacol Exp Ther ; 384(1): 205-223, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36310035

RESUMEN

One important function of the vascular blood-brain barrier (BBB) is to facilitate neuroimmune communication. The BBB fulfills this function, in part, through its ability to transport cytokines and chemokines. C-C motif chemokine receptor 2 (CCL2) (MCP-1) and C-C motif chemokine receptor 5 (CCL5) (RANTES) are proinflammatory chemokines that mediate neuroimmune responses to acute insults and aspects of brain injury and neurodegenerative diseases; however, a blood-to-brain transport system has not been evaluated for either chemokine in vivo. Therefore, we determined whether CCL2 and CCL5 in blood can cross the intact BBB and enter the brain. Using CD-1 mice, we found that 125I-labeled CCL2 and CCL5 crossed the BBB and entered the brain parenchyma. We next aimed to identify the mechanisms of 125I-CCL2 and 125I-CCL5 transport in an in situ brain perfusion model. We found that both heparin and eprodisate inhibited brain uptake of 125I-CCL2 and 125I-CCL5 in situ, whereas antagonists of their receptors, CCR2 or CCR5, respectively, did not, suggesting that heparan sulfates at the endothelial surface mediate BBB transport. Finally, we showed that CCL2 and CCL5 transport across the BBB increased following a single injection of 0.3 mg/kg lipopolysaccharide. These data demonstrate that CCL2 and CCL5 in the brain can derive, in part, from the circulation, especially during systemic inflammation. Further, binding to the BBB-associated heparan sulfate is a mechanism by which both chemokines can cross the intact BBB, highlighting a novel therapeutic target for treating neuroinflammation. SIGNIFICANCE STATEMENT: Our work demonstrates that C-C motif chemokine ligand 2 (CCL2) and C-C motif chemokine ligand 5 (CCL5) can cross the intact blood-brain barrier and that transport is robustly increased during inflammation. These data suggest that circulating CCL2 and CCL5 can contribute to brain levels of each chemokine. We further show that the transport of both chemokines is inhibited by heparin and eprodisate, suggesting that CCL2/CCL5-heparan sulfate interactions could be therapeutically targeted to limit accumulation of these chemokines in the brain.


Asunto(s)
Barrera Hematoencefálica , Heparina , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Heparina/farmacología , Ligandos , Quimiocinas/metabolismo , Inflamación/tratamiento farmacológico , Receptores de Quimiocina , Heparitina Sulfato
3.
Proc Natl Acad Sci U S A ; 117(52): 33414-33425, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318186

RESUMEN

The ability to accurately measure mutations is critical for basic research and identifying potential drug and chemical carcinogens. Current methods for in vivo quantification of mutagenesis are limited because they rely on transgenic rodent systems that are low-throughput, expensive, prolonged, and do not fully represent other species such as humans. Next-generation sequencing (NGS) is a conceptually attractive alternative for detecting mutations in the DNA of any organism; however, the limit of resolution for standard NGS is poor. Technical error rates (∼1 × 10-3) of NGS obscure the true abundance of somatic mutations, which can exist at per-nucleotide frequencies ≤1 × 10-7 Using duplex sequencing, an extremely accurate error-corrected NGS (ecNGS) technology, we were able to detect mutations induced by three carcinogens in five tissues of two strains of mice within 31 d following exposure. We observed a strong correlation between mutation induction measured by duplex sequencing and the gold-standard transgenic rodent mutation assay. We identified exposure-specific mutation spectra of each compound through trinucleotide patterns of base substitution. We observed variation in mutation susceptibility by genomic region, as well as by DNA strand. We also identified a primordial marker of carcinogenesis in a cancer-predisposed strain of mice, as evidenced by clonal expansions of cells carrying an activated oncogene, less than a month after carcinogen exposure. These findings demonstrate that ecNGS is a powerful method for sensitively detecting and characterizing mutagenesis and the early clonal evolutionary hallmarks of carcinogenesis. Duplex sequencing can be broadly applied to basic mutational research, regulatory safety testing, and emerging clinical applications.


Asunto(s)
Carcinogénesis/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutagénesis/genética , Animales , Carcinógenos/toxicidad , Análisis por Conglomerados , ADN/genética , Genes ras , Sitios Genéticos , Genoma , Humanos , Ratones Transgénicos , Mutación/genética , Neoplasias/genética , Oncogenes , Fenotipo , Transcripción Genética
4.
Proc Natl Acad Sci U S A ; 112(19): E2457-66, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25827226

RESUMEN

Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , Mutación , Nucleótidos/química , Fosfatos/química , Saccharomyces cerevisiae/metabolismo , Alelos , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Ciclo Celular , Análisis Mutacional de ADN , Replicación del ADN , Variación Genética , Humanos , Mutagénesis , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fenotipo , Plásmidos/metabolismo , Fase S , Saccharomyces cerevisiae/genética
5.
Community Ment Health J ; 54(5): 507-513, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29185153

RESUMEN

We sought to understand stakeholder perspectives on barriers to metabolic screening for people with severe mental illness. We additionally assessed the feasibility of expanding psychiatrists' scope of practice to include treatment of cardiometabolic abnormalities. We conducted four focus groups among patients with severe mental illness, community psychiatrists, primary care providers, and public health administrators. Focus group transcripts were thematically analyzed. Three domains emerged: challenges with patient navigation of the complex health care system, problem list prioritization difficulties, and concern that treatment of cardiometabolic abnormalities were beyond the scope of practice of psychiatrists. Stakeholders agreed that navigating the health care system was challenging for this population and led to undertreatment of cardiometabolic risk factors. Expansion of psychiatrists' scope of practice within community mental health appears acceptable to patients and may be a mechanism to improve cardiometabolic care among people with severe mental illness.


Asunto(s)
Actitud del Personal de Salud , Psiquiatría Comunitaria/métodos , Accesibilidad a los Servicios de Salud , Síndrome Metabólico/diagnóstico , Rol del Médico/psicología , Médicos/psicología , Enfermedades Cardiovasculares/complicaciones , Enfermedades Cardiovasculares/diagnóstico , Servicios Comunitarios de Salud Mental , Grupos Focales , Humanos , Trastornos Mentales/complicaciones , Síndrome Metabólico/complicaciones , Aceptación de la Atención de Salud , Pacientes , San Francisco , Índice de Severidad de la Enfermedad , Participación de los Interesados/psicología
6.
Am J Hum Genet ; 89(3): 398-406, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21907011

RESUMEN

Genome-wide analysis of a multi-incident family with autosomal-dominant parkinsonism has implicated a locus on chromosomal region 3q26-q28. Linkage and disease segregation is explained by a missense mutation c.3614G>A (p.Arg1205His) in eukaryotic translation initiation factor 4-gamma (EIF4G1). Subsequent sequence and genotype analysis identified EIF4G1 c.1505C>T (p.Ala502Val), c.2056G>T (p.Gly686Cys), c.3490A>C (p.Ser1164Arg), c.3589C>T (p.Arg1197Trp) and c.3614G>A (p.Arg1205His) substitutions in affected subjects with familial parkinsonism and idiopathic Lewy body disease but not in control subjects. Despite different countries of origin, persons with EIF4G1 c.1505C>T (p.Ala502Val) or c.3614G>A (p.Arg1205His) mutations appear to share haplotypes consistent with ancestral founders. eIF4G1 p.Ala502Val and p.Arg1205His disrupt eIF4E or eIF3e binding, although the wild-type protein does not, and render mutant cells more vulnerable to reactive oxidative species. EIF4G1 mutations implicate mRNA translation initiation in familial parkinsonism and highlight a convergent pathway for monogenic, toxin and perhaps virally-induced Parkinson disease.


Asunto(s)
Cromosomas Humanos Par 3/genética , Factor 4G Eucariótico de Iniciación/genética , Enfermedad de Parkinson/genética , Biosíntesis de Proteínas/genética , Secuencia de Bases , Clonación Molecular , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Citometría de Flujo , Ligamiento Genético , Genotipo , Humanos , Inmunoprecipitación , Mitocondrias/fisiología , Datos de Secuencia Molecular , Mutación Missense/genética , Linaje
7.
PLoS Genet ; 7(10): e1002282, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22022273

RESUMEN

Cells rely on a network of conserved pathways to govern DNA replication fidelity. Loss of polymerase proofreading or mismatch repair elevates spontaneous mutation and facilitates cellular adaptation. However, double mutants are inviable, suggesting that extreme mutation rates exceed an error threshold. Here we combine alleles that affect DNA polymerase δ (Pol δ) proofreading and mismatch repair to define the maximal error rate in haploid yeast and to characterize genetic suppressors of mutator phenotypes. We show that populations tolerate mutation rates 1,000-fold above wild-type levels but collapse when the rate exceeds 10⁻³ inactivating mutations per gene per cell division. Variants that escape this error-induced extinction (eex) rapidly emerge from mutator clones. One-third of the escape mutants result from second-site changes in Pol δ that suppress the proofreading-deficient phenotype, while two-thirds are extragenic. The structural locations of the Pol δ changes suggest multiple antimutator mechanisms. Our studies reveal the transient nature of eukaryotic mutators and show that mutator phenotypes are readily suppressed by genetic adaptation. This has implications for the role of mutator phenotypes in cancer.


Asunto(s)
ADN Polimerasa III/metabolismo , Replicación del ADN/genética , Inestabilidad de Microsatélites , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Supresión Genética/genética , Alelos , Animales , Daño del ADN/genética , ADN Polimerasa III/genética , Reparación del ADN/genética , Escherichia coli/genética , Genotipo , Haploidia , Ratones , Tasa de Mutación , Proteínas de Saccharomyces cerevisiae/genética
8.
Crit Rev Biochem Mol Biol ; 46(6): 548-70, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21977975

RESUMEN

Evolution balances DNA replication speed and accuracy to optimize replicative fitness and genetic stability. There is no selective pressure to improve DNA replication fidelity beyond the background mutation rate from other sources, such as DNA damage. However, DNA polymerases remain amenable to amino acid substitutions that lower intrinsic error rates. Here, we review these 'antimutagenic' changes in DNA polymerases and discuss what they reveal about mechanisms of replication fidelity. Pioneering studies with bacteriophage T4 DNA polymerase (T4 Pol) established the paradigm that antimutator amino acid substitutions reduce replication errors by increasing proofreading efficiency at the expense of polymerase processivity. The discoveries of antimutator substitutions in proofreading-deficient 'mutator' derivatives of bacterial Pols I and III and yeast Pol δ suggest there must be additional antimutagenic mechanisms. Remarkably, many of the affected amino acid positions from Pol I, Pol III, and Pol δ are similar to the original T4 Pol substitutions. The locations of antimutator substitutions within DNA polymerase structures suggest that they may increase nucleotide selectivity and/or promote dissociation of primer termini from polymerases poised for misincorporation, leading to expulsion of incorrect nucleotides. If misincorporation occurs, enhanced primer dissociation from polymerase domains may improve proofreading in cis by an intrinsic exonuclease or in trans by alternate cellular proofreading activities. Together, these studies reveal that natural selection can readily restore replication error rates to sustainable levels following an adaptive mutator phenotype.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , Mutación , Animales , Reparación de la Incompatibilidad de ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/química , Variación Genética , Humanos , Modelos Moleculares , Conformación Proteica
9.
Pharmacol Ther ; 256: 108605, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367866

RESUMEN

Microbial metabolites have emerged as key players in the interplay between diet, the gut microbiome, and host health. Two major classes, short-chain fatty acids (SCFAs) and tryptophan (Trp) metabolites, are recognized to regulate inflammatory, immune, and metabolic responses within the host. Given that many human diseases are associated with dysbiosis of the gut microbiome and consequent reductions in microbial metabolite production, the administration of these metabolites represents a direct, multi-targeted treatment. While a multitude of preclinical studies showcase the therapeutic potential of both SCFAs and Trp metabolites, they often rely on high doses and frequent dosing regimens to achieve systemic effects, thereby constraining their clinical applicability. To address these limitations, a variety of pharmaceutical formulations approaches that enable targeted, delayed, and/or sustained microbial metabolite delivery have been developed. These approaches, including enteric encapsulations, esterification to dietary fiber, prodrugs, and nanoformulations, pave the way for the next generation of microbial metabolite-based therapeutics. In this review, we first provide an overview of the roles of microbial metabolites in maintaining host homeostasis and outline how compromised metabolite production contributes to the pathogenesis of inflammatory, metabolic, autoimmune, allergic, infectious, and cancerous diseases. Additionally, we explore the therapeutic potential of metabolites in these disease contexts. Then, we provide a comprehensive and up-to-date review of the pharmaceutical strategies that have been employed to enhance the therapeutic efficacy of microbial metabolites, with a focus on SCFAs and Trp metabolites.


Asunto(s)
Microbioma Gastrointestinal , Hipersensibilidad , Humanos , Preparaciones Farmacéuticas , Ácidos Grasos Volátiles/fisiología
10.
Nat Ecol Evol ; 8(5): 1021-1034, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38361161

RESUMEN

Mitochondrial genomes co-evolve with the nuclear genome over evolutionary timescales and are shaped by selection in the female germline. Here we investigate how mismatching between nuclear and mitochondrial ancestry impacts the somatic evolution of the mitochondrial genome in different tissues throughout ageing. We used ultrasensitive duplex sequencing to profile ~2.5 million mitochondrial genomes across five mitochondrial haplotypes and three tissues in young and aged mice, cataloguing ~1.2 million mitochondrial somatic and ultralow-frequency inherited mutations, of which 81,097 are unique. We identify haplotype-specific mutational patterns and several mutational hotspots, including at the light strand origin of replication, which consistently exhibits the highest mutation frequency. We show that rodents exhibit a distinct mitochondrial somatic mutational spectrum compared with primates with a surfeit of reactive oxygen species-associated G > T/C > A mutations, and that somatic mutations in protein-coding genes exhibit signatures of negative selection. Lastly, we identify an extensive enrichment in somatic reversion mutations that 're-align' mito-nuclear ancestry within an organism's lifespan. Together, our findings demonstrate that mitochondrial genomes are a dynamically evolving subcellular population shaped by somatic mutation and selection throughout organismal lifetimes.


Asunto(s)
Envejecimiento , Genoma Mitocondrial , Haplotipos , Mutación , Selección Genética , Animales , Envejecimiento/genética , Ratones , ADN Mitocondrial/genética , Núcleo Celular/genética , Femenino , Mitocondrias/genética , Ratones Endogámicos C57BL , Masculino
11.
BMC Neurosci ; 14: 158, 2013 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-24359611

RESUMEN

BACKGROUND: Insulin-like growth factor binding protein-2 (IGFBP-2) regulates the bioavailability, transportation, and localization of insulin-like growth factor-I (IGF-I), an effective neuroprotectant in animal stroke models especially when administered intranasally. Therefore, determining IGFBP-2's endogenous distribution in the normal and ischemic brain is essential in maximizing the neuroprotective potential of the intranasal IGF-I treatment approach. However, current data on IGFBP-2 is limited to mRNA and in situ hybridization studies. The purpose of this study was to determine if there are any changes in IGFBP-2 protein levels and distribution in ischemic brain and also to determine if IGFBPs play a role in the transportation of intranasally administered IGF-I into the brain. RESULTS: Using an in vitro approach, we show that ischemia causes changes in the distribution of IGFBP-2 in primary cortical neurons and astrocytes. In addition, we show using the transient middle cerebral artery occlusion (MCAO) model in mice that there is a significant increase in IGFBP-2 levels in the stroke penumbra and core after 72 h. This correlated with an overall increase in IGF-I after stroke, with the highest levels of IGF-I in the stroke core after 72 h. Brain sections from stroke mice indicate that neurons and astrocytes located in the penumbra both have increased expression of IGFBP-2, however, IGFBP-2 was not detected in microglia. We used binding competition studies to show that intranasally administered exogenous IGF-I uptake into the brain is not receptor mediated and is likely facilitated by IGFBPs. CONCLUSIONS: The change in protein levels indicates that IGFBP-2 plays an IGF-I-dependent and -independent role in the brain's acute (neuroprotection) and chronic (tissue remodeling) response to hypoxic-ischemic injury. Competition studies indicate that IGFBPs may have a role in rapid transportation of exogenous IGF-I from the nasal tissue to the site of injury.


Asunto(s)
Hipoxia-Isquemia Encefálica/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Administración Intranasal , Animales , Astrocitos/metabolismo , Transporte Biológico , Cerebelo/metabolismo , Corteza Cerebral/metabolismo , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Microglía/metabolismo , Neuronas/metabolismo , Bulbo Olfatorio/metabolismo , Cultivo Primario de Células , Ratas
12.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36945529

RESUMEN

Mitochondrial genomes co-evolve with the nuclear genome over evolutionary timescales and are shaped by selection in the female germline. Here, we investigate how mismatching between nuclear and mitochondrial ancestry impacts the somatic evolution of the mt-genome in different tissues throughout aging. We used ultra-sensitive Duplex Sequencing to profile ~2.5 million mt-genomes across five mitochondrial haplotypes and three tissues in young and aged mice, cataloging ~1.2 million mitochondrial somatic and ultra low frequency inherited mutations, of which 81,097 are unique. We identify haplotype-specific mutational patterns and several mutational hotspots, including at the Light Strand Origin of Replication, which consistently exhibits the highest mutation frequency. We show that rodents exhibit a distinct mitochondrial somatic mutational spectrum compared to primates with a surfeit of reactive oxygen species-associated G>T/C>A mutations, and that somatic mutations in protein coding genes exhibit signatures of negative selection. Lastly, we identify an extensive enrichment in somatic reversion mutations that "re-align" mito-nuclear ancestry within an organism's lifespan. Together, our findings demonstrate that mitochondrial genomes are a dynamically evolving subcellular population shaped by somatic mutation and selection throughout organismal lifetimes.

13.
bioRxiv ; 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37214853

RESUMEN

Duplex sequencing (DuplexSeq) is an error-corrected next-generation sequencing (ecNGS) method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors by comparing grouped strand sequencing reads. The resulting background of less than one artifactual mutation per 10 7 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DuplexSeq-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues, a considerable advancement compared to currently used in vivo gene mutation assays. HIGHLIGHTS: DuplexSeq is an ultra-accurate NGS technology that directly quantifies mutationsENU-dependent mutagenesis was detected 24 h post-exposure in proliferative tissuesMultiple tissues exhibited the canonical ENU mutation spectrum 7 d after exposureResults obtained with DuplexSeq were highly concordant between laboratoriesThe Rat-50 Mutagenesis Assay is promising for applications in genetic toxicology.

14.
Artículo en Inglés | MEDLINE | ID: mdl-37770135

RESUMEN

Duplex sequencing (DS) is an error-corrected next-generation sequencing method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors in consensus sequences. The resulting background of less than one artifactual mutation per 107 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DS-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues⁠, a considerable advancement compared to currently used in vivo gene mutation assays.


Asunto(s)
Etilnitrosourea , Compuestos de Nitrosourea , Ratas , Masculino , Animales , Etilnitrosourea/toxicidad , Reproducibilidad de los Resultados , Ratas Sprague-Dawley , Mutagénesis , Mutación , Mutágenos/toxicidad
15.
Fluids Barriers CNS ; 19(1): 10, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123529

RESUMEN

BACKGROUND: Human induced pluripotent stem cell (hiPSC)-derived brain endothelial-like cells (iBECs) are a robust, scalable, and translatable model of the human blood-brain barrier (BBB). Prior works have shown that high transendothelial electrical resistance (TEER) persists in iBECs for at least 2 weeks, emphasizing the utility of the model for longer term studies. However, most studies evaluate iBECs within the first few days of subculture, and little is known about their proliferative state, which could influence their functions. In this study, we characterized iBEC proliferative state in relation to key BBB properties at early (2 days) and late (9 days) post-subculture time points. METHODS: hiPSCs were differentiated into iBECs using fully defined, serum-free medium. The proportion of proliferating cells was determined by BrdU assays. We evaluated TEER, expression of glycolysis enzymes and tight and adherens junction proteins (TJP and AJP), and glucose transporter-1 (GLUT1) function by immunoblotting, immunofluorescence, and quantifying radiolabeled tracer permeabilities. We also compared barrier disruption in response to TNF-α and conditioned medium (CM) from hiPSC-derived neurons harboring the Alzheimer's disease (AD)-causing Swedish mutation (APPSwe/+). RESULTS: A significant decline in iBEC proliferation over time in culture was accompanied by adoption of a more quiescent endothelial metabolic state, indicated by downregulation of glycolysis-related proteins and upregulation GLUT1. Interestingly, upregulation of GLUT1 was associated with reduced glucose transport rates in more quiescent iBECs. We also found significant decreases in claudin-5 (CLDN5) and vascular endothelial-cadherin (VE-Cad) and a trend toward a decrease in platelet endothelial cell adhesion molecule-1 (PECAM-1), whereas zona occludens-1 (ZO-1) increased and occludin (OCLN) remained unchanged. Despite differences in TJP and AJP expression, there was no difference in mean TEER on day 2 vs. day 9. TNF-α induced disruption irrespective of iBEC proliferative state. Conversely, APPSwe/+ CM disrupted only proliferating iBEC monolayers. CONCLUSION: iBECs can be used to study responses to disease-relevant stimuli in proliferating vs. more quiescent endothelial cell states, which may provide insight into BBB vulnerabilities in contexts of development, brain injury, and neurodegenerative disease.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Encéfalo/irrigación sanguínea , Proliferación Celular/fisiología , Células Endoteliales/fisiología , Glucólisis/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Células Cultivadas , Humanos
16.
J Autism Dev Disord ; 51(2): 725-733, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32535668

RESUMEN

Existing research suggests that people with Autism Spectrum Disorder (ASD) are more likely than those without ASD to self-identify as asexual, or as being on the asexual spectrum. This study contributes to the literature by exploring aspects of sexuality and well-being in a large, community-based sample of young women (18-30 years old) with ASD (N = 247) and comparing the experiences of those with asexual spectrum identities and those with other sexual orientations (e.g., gay, bisexual, heterosexual). In the present sample, asexual participants reported less sexual desire and fewer sexual behaviors than those with other sexual orientations, but greater sexual satisfaction. Being on the asexual spectrum also was associated with lower generalized anxiety symptoms. Clinical and research implications are discussed.


Asunto(s)
Ansiedad/psicología , Trastorno del Espectro Autista/psicología , Sexualidad/psicología , Adolescente , Adulto , Ansiedad/diagnóstico , Ansiedad/epidemiología , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/epidemiología , Femenino , Humanos , Estudios Longitudinales , Conducta Sexual/fisiología , Conducta Sexual/psicología , Sexualidad/fisiología , Adulto Joven
17.
Nat Neurosci ; 24(3): 368-378, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33328624

RESUMEN

It is unclear whether severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019, can enter the brain. Severe acute respiratory syndrome coronavirus 2 binds to cells via the S1 subunit of its spike protein. We show that intravenously injected radioiodinated S1 (I-S1) readily crossed the blood-brain barrier in male mice, was taken up by brain regions and entered the parenchymal brain space. I-S1 was also taken up by the lung, spleen, kidney and liver. Intranasally administered I-S1 also entered the brain, although at levels roughly ten times lower than after intravenous administration. APOE genotype and sex did not affect whole-brain I-S1 uptake but had variable effects on uptake by the olfactory bulb, liver, spleen and kidney. I-S1 uptake in the hippocampus and olfactory bulb was reduced by lipopolysaccharide-induced inflammation. Mechanistic studies indicated that I-S1 crosses the blood-brain barrier by adsorptive transcytosis and that murine angiotensin-converting enzyme 2 is involved in brain and lung uptake, but not in kidney, liver or spleen uptake.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Glicoproteína de la Espiga del Coronavirus/farmacocinética , Administración Intranasal , Administración Intravenosa , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Apolipoproteínas E/genética , COVID-19 , Genotipo , Hipocampo/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Transgénicos , Bulbo Olfatorio/metabolismo , Caracteres Sexuales , Glicoproteína de la Espiga del Coronavirus/administración & dosificación , Distribución Tisular , Transcitosis
18.
Environ Mol Mutagen ; 62(5): 306-318, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34050964

RESUMEN

The organotypic human air-liquid-interface (ALI) airway tissue model has been used as an in vitro cell culture system for evaluating the toxicity of inhaled substances. ALI airway cultures are highly differentiated, which has made it challenging to evaluate genetic toxicology endpoints. In the current study, we assayed DNA damage with the high-throughput CometChip assay and quantified mutagenesis with Duplex Sequencing, an error-corrected next-generation sequencing method capable of detecting a single mutation per 107 base pairs. Fully differentiated human ALI airway cultures were treated from the basolateral side with 6.25 to 100 µg/mL ethyl methanesulfonate (EMS) over a period of 28 days. CometChip assays were conducted after 3 and 28 days of treatment, and Duplex Sequencing after 28 days of treatment. Treating the airway cultures with EMS resulted in time- and concentration-dependent increases in DNA damage and a concentration-dependent increase in mutant frequency. The mutations observed in the EMS-treated cultures were predominantly C → T transitions and exhibited a unique trinucleotide signature relative to the negative control. Measurement of physiological endpoints indicated that the EMS treatments had no effect on anti-p63-positive basal cell frequency, but produced concentration-responsive increases in cytotoxicity and perturbations in cell morphology, along with concentration-responsive decreases in culture viability, goblet cell and anti-Ki67-positive proliferating cell frequency, cilia beating frequency, and mucin secretion. The results indicate that a unified 28-day study can be used to measure several important safety endpoints in physiologically relevant human in vitro ALI airway cultures, including DNA damage, mutagenicity, and tissue-specific general toxicity.


Asunto(s)
Daño del ADN , Células Epiteliales/patología , Metanosulfonato de Etilo/efectos adversos , Mutagénesis , Pruebas de Mutagenicidad/métodos , Mutación , Sistema Respiratorio/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Mutágenos/efectos adversos , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/metabolismo
19.
Blood Cancer J ; 10(5): 61, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457305

RESUMEN

Mutations of ABL1 are the dominant mechanism of relapse in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL). We performed highly accurate Duplex Sequencing of exons 4-10 of ABL1 on bone marrow or peripheral blood samples from 63 adult patients with previously untreated Ph + ALL who received induction with intensive chemotherapy plus a BCR-ABL1 TKI. We identified ABL1 mutations prior to BCR-ABL1 TKI exposure in 78% of patients. However, these mutations were generally present at extremely low levels (median variant allelic frequency 0.008% [range, 0.004%-3.71%] and did not clonally expand and lead to relapse in any patient, even when the pretreatment mutation was known to confer resistance to the TKI received. In relapse samples harboring a TKI-resistant ABL1 mutation, the corresponding mutation could not be detected pretreatment, despite validated sequencing sensitivity of Duplex Sequencing down to 0.005%. In samples under the selective pressure of ongoing TKI therapy, we detected low-level, emerging resistance mutations up to 5 months prior to relapse. These findings suggest that pretreatment ABL1 mutation assessment should not guide upfront TKI selection in Ph + ALL, although serial testing while on TKI therapy may allow for early detection of clinically actionable resistant clones.


Asunto(s)
Resistencia a Antineoplásicos , Cromosoma Filadelfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-abl/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Proteínas de Fusión bcr-abl/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación/efectos de los fármacos , Cromosoma Filadelfia/efectos de los fármacos , Proteínas Proto-Oncogénicas c-abl/química , Adulto Joven
20.
Cell Rep ; 28(1): 132-144.e3, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269435

RESUMEN

High-accuracy next-generation DNA sequencing promises a paradigm shift in early cancer detection by enabling the identification of mutant cancer molecules in minimally invasive body fluid samples. We demonstrate 80% sensitivity for ovarian cancer detection using ultra-accurate Duplex Sequencing to identify TP53 mutations in uterine lavage. However, in addition to tumor DNA, we also detect low-frequency TP53 mutations in nearly all lavages from women with and without cancer. These mutations increase with age and share the selection traits of clonal TP53 mutations commonly found in human tumors. We show that low-frequency TP53 mutations exist in multiple healthy tissues, from newborn to centenarian, and progressively increase in abundance and pathogenicity with older age across tissue types. Our results illustrate that subclonal cancer evolutionary processes are a ubiquitous part of normal human aging, and great care must be taken to distinguish tumor-derived from age-associated mutations in high-sensitivity clinical cancer diagnostics.


Asunto(s)
Envejecimiento/genética , Evolución Clonal/genética , ADN de Neoplasias/genética , Neoplasias Ováricas/genética , Proteína p53 Supresora de Tumor/genética , Adulto , Anciano , Anciano de 80 o más Años , Ácidos Nucleicos Libres de Células/genética , Bases de Datos Genéticas , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Recién Nacido , Persona de Mediana Edad , Mutación , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología , Selección Genética , Análisis de Secuencia de ADN , Útero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA