Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
GEN Biotechnol ; 2(4): 301-316, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37928406

RESUMEN

Scientists have used pharmacological inhibitors of polycomb proteins to restore the expression of tumor suppressor genes and stop cancer proliferation and invasion. A major limitation of this approach is that key transcriptional activators, such as TP53 and BAF SWI/SNF, are often mutated in cancer. Poor clinical results for polycomb-targeting therapies in solid cancers, including triple-negative breast cancer (TNBC), could discourage the further development of epigenetic monotherapies. Here, we performed epigenome actuation with a synthetic reader-actuator (SRA) that binds trimethylated histone H3 lysine 27 in polycomb chromatin and modulates core transcriptional activators. In SRA-expressing TNBC BT-549 cells, 122 genes become upregulated ≥2-fold, including the genes involved in cell death, cell cycle arrest, and migration inhibition. The SRA-expressing spheroids showed reduced size in Matrigel and loss of invasion. Therefore, targeting Mediator-recruiting regulators to silenced chromatin can activate tumor suppressors and stimulate anti-cancer phenotypes, and further development of robust gene regulators might benefit TNBC patients.

2.
bioRxiv ; 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36747762

RESUMEN

Scientists have used small molecule inhibitors and genetic knockdown of gene-silencing polycomb repressive complexes (PRC1/2) to determine if restoring the expression of tumor suppressor genes can block proliferation and invasion of cancer cells. A major limitation of this approach is that inhibitors can not restore key transcriptional activators that are mutated in many cancers, such as p53 and members of the BRAF SWI/SNF complex. Furthermore, small molecule inhibitors can alter the activity of, rather than inhibit, the polycomb enzyme EZH2. While chromatin has been shown to play a major role in gene regulation in cancer, poor clinical results for polycomb chromatin-targeting therapies for diseases like triple-negative breast cancer (TNBC) could discourage further development of this emerging avenue for treatment. To overcome the limitations of inhibiting polycomb to study epigenetic regulation, we developed an engineered chromatin protein to manipulate transcription. The synthetic reader-actuator (SRA) is a fusion protein that directly binds a target chromatin modification and regulates gene expression. Here, we report the activity of an SRA built from polycomb chromodomain and VP64 modules that bind H3K27me3 and subunits of the Mediator complex, respectively. In SRA-expressing BT-549 cells, we identified 122 upregulated differentially expressed genes (UpDEGs, ≥ 2-fold activation, adjusted p < 0.05). On-target epigenetic regulation was determined by identifying UpDEGs at H3K27me3-enriched, closed chromatin. SRA activity induced activation of genes involved in cell death, cell cycle arrest, and the inhibition of migration and invasion. SRA-expressing BT-549 cells showed reduced spheroid size in Matrigel over time, loss of invasion, and activation of apoptosis. These results show that Mediator-recruiting regulators broadly targeted to silenced chromatin activate silenced tumor suppressor genes and stimulate anti-cancer phenotypes. Therefore further development of gene-activating epigenetic therapies might benefit TNBC patients.

3.
J Biol Chem ; 286(42): 36921-31, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21865162

RESUMEN

The transcription factor neural retina leucine zipper (Nrl) is a critical determinant of rod photoreceptor cell fate and a key regulator of rod differentiation. Nrl(-/-) rod precursors fail to turn on rod genes and instead differentiate as cones. Furthermore, NRL mutations in humans cause retinitis pigmentosa. Despite the developmental and clinical significance of this gene, little is known about the transcriptional regulation of Nrl itself. In this study, we sought to define the cis- and trans-acting factors responsible for initiation and maintenance of Nrl transcription in the mouse retina. Utilizing a quantitative mouse retinal explant electroporation assay, we discovered a phylogenetically conserved, 30-base pair region immediately upstream of the transcription start site that is required for Nrl promoter activity. This region contains binding sites for the retinal transcription factors CRX, OTX2, and RORß, and point mutations in these sites completely abolish promoter activity in living retinas. Gel-shift experiments show that CRX, OTX2, and RORß can bind to the critical region in vitro, whereas ChIP experiments demonstrate binding of CRX and OTX2 to the critical region in vivo. Thus, our results indicate that CRX, OTX2, and RORß directly regulate Nrl transcription by binding to critical sites within the Nrl promoter. We propose a model in which Nrl expression is primarily initiated by OTX2 and RORß and later maintained at high levels by CRX and RORß.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/biosíntesis , Proteínas del Ojo/metabolismo , Modelos Biológicos , Elementos de Respuesta/fisiología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Transcripción Genética/fisiología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Diferenciación Celular/fisiología , Proteínas del Ojo/biosíntesis , Proteínas del Ojo/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Mutación Puntual , Células Fotorreceptoras Retinianas Bastones/citología
4.
Am J Physiol Lung Cell Mol Physiol ; 290(4): L703-L709, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16272174

RESUMEN

Inflammation resulting from bacterial infection of the respiratory mucosal surface during pneumonia and cystic fibrosis contributes to pathology. A major consequence of the inflammatory response is recruitment of polymorphonuclear cells (PMNs) to the infected site. To reach the airway, PMNs must travel through several cellular and extracellular barriers, via the actions of multiple cytokines, chemokines, and adhesion molecules. Using a model of polarized lung epithelial cells (A549 or Calu-3) grown on Transwell filters and human PMNs, we have shown that Pseudomonas aeruginosa induces PMN migration across lung epithelial barriers. The process is mediated by epithelial production of the eicosanoid hepoxilin A(3) (HXA(3)) in response to P. aeruginosa infection. HXA(3) is a PMN chemoattractant metabolized from arachidonic acid (AA). Given that release of AA is believed to be the rate-limiting step in generating eicosanoids, we investigated whether P. aeruginosa infection of lung epithelial cells resulted in an increase in free AA. P. aeruginosa infection of A549 or Calu-3 monolayers resulted in a significant increase in [(3)H]AA released from prelabeled lung epithelial cells. This was partially inhibited by PLA(2) inhibitors ONO-RS-082 and ACA as well as an inhibitor of diacylglycerol lipase. Both PLA(2) inhibitors dramatically reduced P. aeruginosa-induced PMN transmigration, whereas the diacylglycerol lipase inhibitor had no effect. In addition, we observed that P. aeruginosa infection caused an increase in the phosphorylation of cytosolic PLA(2) (cPLA(2)), suggesting a mechanism whereby P. aeruginosa activates cPLA(2) generating free AA that may be converted to HXA(3), which is required for mediating PMN transmigration.


Asunto(s)
Infiltración Neutrófila , Fosfolipasas A/metabolismo , Infecciones por Pseudomonas/fisiopatología , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/metabolismo , Ácido Araquidónico/metabolismo , Línea Celular , Polaridad Celular , Factores Quimiotácticos/biosíntesis , Citosol/enzimología , Inhibidores Enzimáticos/farmacología , Células Epiteliales/metabolismo , Fosfolipasas A2 Grupo IV , Humanos , Pulmón/metabolismo , Masculino , Persona de Mediana Edad , Infiltración Neutrófila/efectos de los fármacos , Fosfolipasas A/antagonistas & inhibidores , Fosfolipasas A2 , Fosforilación , Infecciones por Pseudomonas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA