Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Circ Res ; 131(1): 59-73, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35574842

RESUMEN

BACKGROUND: Chronic renal inflammation has been widely recognized as a major promoter of several forms of high blood pressure including salt-sensitive hypertension. In diabetes, IL (interleukin)-6 induces salt sensitivity through a dysregulation of the epithelial sodium channel. However, the origin of this inflammatory process and the molecular events that culminates with an abnormal regulation of epithelial sodium channel and salt sensitivity in diabetes are largely unknown. METHODS: Both in vitro and in vivo approaches were used to investigate the molecular and cellular contributors to the renal inflammation associated with diabetic kidney disease and how these inflammatory components interact to develop salt sensitivity in db/db mice. RESULTS: Thirty-four-week-old db/db mice display significantly higher levels of IL-1ß in renal tubules compared with nondiabetic db/+ mice. Specific suppression of IL-1ß in renal tubules prevented salt sensitivity in db/db mice. A primary culture of renal tubular epithelial cells from wild-type mice releases significant levels of IL-1ß when exposed to a high glucose environment. Coculture of tubular epithelial cells and bone marrow-derived macrophages revealed that tubular epithelial cell-derived IL-1ß promotes the polarization of macrophages towards a proinflammatory phenotype resulting in IL-6 secretion. To evaluate whether macrophages are the cellular target of IL-1ß in vivo, diabetic db/db mice were transplanted with the bone marrow of IL-1R1 (IL-1 receptor type 1) knockout mice. db/db mice harboring an IL-1 receptor type 1 knockout bone marrow remained salt resistant, display lower renal inflammation and lower expression and activity of epithelial sodium channel compared with db/db transplanted with a wild-type bone marrow. CONCLUSIONS: Renal tubular epithelial cell-derived IL-1ß polarizes renal macrophages towards a proinflammatory phenotype that promotes salt sensitivity through the accumulation of renal IL-6. When tubular IL-1ß synthesis is suppressed or in db/db mice in which immune cells lack the IL-1R1, macrophage polarization is blunted resulting in no salt-sensitive hypertension.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Hipertensión , Nefritis , Animales , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/genética , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Nefritis/metabolismo , Receptores de Interleucina-1/metabolismo , Cloruro de Sodio Dietético/toxicidad
2.
Circ Res ; 130(10): 1550-1564, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35430873

RESUMEN

BACKGROUND: Renal T cells contribute importantly to hypertension, but the underlying mechanism is incompletely understood. We reported that CD8Ts directly stimulate distal convoluted tubule cells (DCTs) to increase NCC (sodium chloride co-transporter) expression and salt reabsorption. However, the mechanistic basis of this pathogenic pathway that promotes hypertension remains to be elucidated. METHODS: We used mouse models of DOCA+salt (DOCA) treatment and adoptive transfer of CD8+ T cells (CD8T) from hypertensive animals to normotensive animals in in vivo studies. Co-culture of mouse DCTs and CD8Ts was used as in vitro model to test the effect of CD8T activation in promoting NCC-mediated sodium retention and to identify critical molecular players contributing to the CD8T-DCT interaction. Interferon (IFNγ)-KO mice and mice receiving renal tubule-specific knockdown of PDL1 were used to verify in vitro findings. Blood pressure was continuously monitored via radio-biotelemetry, and kidney samples were saved at experimental end points for analysis. RESULTS: We identified critical molecular players and demonstrated their roles in augmenting the CD8T-DCT interaction leading to salt-sensitive hypertension. We found that activated CD8Ts exhibit enhanced interaction with DCTs via IFN-γ-induced upregulation of MHC-I and PDL1 in DCTs, thereby stimulating higher expression of NCC in DCTs to cause excessive salt retention and progressive elevation of blood pressure. Eliminating IFN-γ or renal tubule-specific knockdown of PDL1 prevented T cell homing into the kidney, thereby attenuating hypertension in 2 different mouse models. CONCLUSIONS: Our results identified the role of activated CD8Ts in contributing to increased sodium retention in DCTS through the IFNγ-PDL1 pathway. These findings provide a new mechanism for T cell involvement in the pathogenesis of hypertension and reveal novel therapeutic targets.


Asunto(s)
Acetato de Desoxicorticosterona , Hipertensión , Animales , Linfocitos T CD8-positivos/metabolismo , Acetato de Desoxicorticosterona/metabolismo , Acetato de Desoxicorticosterona/farmacología , Modelos Animales de Enfermedad , Hipertensión/metabolismo , Túbulos Renales Distales/metabolismo , Túbulos Renales Distales/patología , Ratones , Sodio/metabolismo , Simportadores del Cloruro de Sodio/metabolismo , Cloruro de Sodio Dietético
3.
Nat Chem Biol ; 17(2): 129-137, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33414556

RESUMEN

Although nanotechnology often addresses biomedical needs, nanoscale tools can also facilitate broad biological discovery. Nanoscale delivery, imaging, biosensing, and bioreactor technologies may address unmet questions at the interface between chemistry and biology. Currently, many chemical biologists do not include nanomaterials in their toolbox, and few investigators develop nanomaterials in the context of chemical tools to answer biological questions. We reason that the two fields are ripe with opportunity for greater synergy. Nanotechnologies can expand the utility of chemical tools in the hands of chemical biologists, for example, through controlled delivery of reactive and/or toxic compounds or signal-binding events of small molecules in living systems. Conversely, chemical biologists can work with nanotechnologists to address challenging biological questions that are inaccessible to both communities. This Perspective aims to introduce the chemical biology community to nanotechnologies that may expand their methodologies while inspiring nanotechnologists to address questions relevant to chemical biology.


Asunto(s)
Biología Molecular/tendencias , Nanotecnología/tendencias , Animales , Materiales Biocompatibles , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Enzimas/química , Humanos , Biología Molecular/métodos , Imagen Molecular/métodos , Nanopartículas
4.
J Am Soc Nephrol ; 33(2): 342-356, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34921111

RESUMEN

BACKGROUND: Repeated administration of cisplatin causes CKD. In previous studies, we reported that the kidney-secreted survival protein renalase (RNLS) and an agonist peptide protected mice from cisplatin-induced AKI. METHODS: To investigate whether kidney-targeted delivery of RNLS might prevent cisplatin-induced CKD in a mouse model, we achieved specific delivery of a RNLS agonist peptide (RP81) to the renal proximal tubule by encapsulating the peptide in mesoscale nanoparticles (MNPs). We used genetic deletion of RNLS, single-cell RNA sequencing analysis, and Western blotting to determine efficacy and to explore underlying mechanisms. We also measured plasma RNLS in patients with advanced head and neck squamous cell carcinoma receiving their first dose of cisplatin chemotherapy. RESULTS: In mice with CKD induced by cisplatin, we observed an approximate 60% reduction of kidney RNLS; genetic deletion of RNLS was associated with significantly more severe cisplatin-induced CKD. In this severe model of cisplatin-induced CKD, systemic administration of MNP-encapsulated RP81 (RP81-MNP) significantly reduced CKD as assessed by plasma creatinine and histology. It also decreased inflammatory cytokines in plasma and inhibited regulated necrosis in kidney. Single-cell RNA sequencing analyses revealed that RP81-MNP preserved epithelial components of the nephron and the vasculature and suppressed inflammatory macrophages and myofibroblasts. In patients receiving their first dose of cisplatin chemotherapy, plasma RNLS levels trended lower at day 14 post-treatment. CONCLUSIONS: Kidney-targeted delivery of RNLS agonist RP81-MNP protects against cisplatin-induced CKD by decreasing cell death and improving the viability of the renal proximal tubule. These findings suggest that such an approach might mitigate the development of CKD in patients receiving cisplatin cancer chemotherapy.


Asunto(s)
Cisplatino/efectos adversos , Monoaminooxidasa/metabolismo , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/prevención & control , Secuencia de Aminoácidos , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Línea Celular , Cisplatino/administración & dosificación , Creatinina/sangre , Modelos Animales de Enfermedad , Expresión Génica/efectos de los fármacos , Tasa de Filtración Glomerular , Receptor Celular 1 del Virus de la Hepatitis A/sangre , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monoaminooxidasa/deficiencia , Monoaminooxidasa/genética , Nanocápsulas/administración & dosificación , Péptidos/administración & dosificación , Péptidos/genética , Insuficiencia Renal Crónica/patología
5.
Pharm Res ; 39(11): 2699-2707, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36163410

RESUMEN

INTRODUCTION: Nanoparticle-mediated gene therapy has found substantial clinical impact, primarily focused on lipid-based nanoparticles. In comparison with lipid nanoparticles, polymeric particles may have certain advantages such as increased biocompatibility and controlled release. Our prior studies have found that polymeric mesoscale nanoparticles exhibited specific targeting to the renal proximal tubules. Thus, in this study, we sought to identify formulation parameters that allow for development of polymeric mesoscale nanoparticles encapsulating functional mRNA for delivery into tubular epithelial cells. METHODS: We evaluated particle uptake in vitro prior to exploring formulation parameters related to introduction of a primary mixture of polymer in acetonitrile and hydrophilic mRNA in water. Finally, we evaluated their functionality in a renal tubular epithelial cell line. RESULTS: We found that MNPs are endocytosed within 15 min and that the mesoscale nanoparticle formulation procedure was generally robust to introduction of a primary mixture and encapsulation of mRNA. These particles exhibited substantial uptake in renal cells in vitro and rapid (< 1 h) expression of a model mCherry fluorescent protein. CONCLUSION: We anticipate these findings having potential in the delivery of specific gene therapies for renal disorders and cancer.


Asunto(s)
Nanopartículas , ARN Mensajero/genética , Liposomas , Polímeros
6.
Nano Lett ; 20(10): 7287-7295, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32955895

RESUMEN

Fusion protein tags are widely used to capture and track proteins in research and industrial bioreactor processes. Quantifying fusion-tagged proteins normally requires several purification steps coupled with classical protein assays. Here, we developed a broadly applicable nanosensor platform that quantifies glutathione-S-transferase (GST) fusion proteins in real-time. We synthesized a glutathione-DNA-carbon nanotube system to investigate glutathione-GST interactions via semiconducting single-walled carbon nanotube (SWCNT) photoluminescence. We found that SWCNT fluorescence wavelength and intensity modulation occurred specifically in response to GST and GST-fusions. The sensor response was dependent on SWCNT structure, wherein mod(n - m, 3) = 1 nanotube wavelength and intensity responses correlated with nanotube diameter distinctly from mod(n - m, 3) = 2 SWCNT responses. We also found broad functionality of this sensor to diverse GST-tagged proteins. This work comprises the first label-free optical sensor for GST and has implications for the assessment of protein expression in situ, including in imaging and industrial bioreactor settings.


Asunto(s)
Glutatión Transferasa , Glutatión , Cromatografía de Afinidad , Glutatión Transferasa/genética , Proteínas
7.
Kidney Int ; 98(1): 76-87, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32386967

RESUMEN

We developed an innovative therapy for ischemic acute kidney injury with discerning kidney-targeted delivery of a selective Toll-like receptor 9 (TLR9) antagonist in mice subjected to renal ischemia reperfusion injury. Our previous studies showed that mice deficient in renal proximal tubular TLR9 were protected against renal ischemia reperfusion injury demonstrating a critical role for renal proximal tubular TLR9 in generating ischemic acute kidney injury. Herein, we used 300-400 nm polymer-based mesoscale nanoparticles that localize to the renal tubules after intravenous injection. Mice were subjected to sham surgery or 30 minutes renal ischemia and reperfusion injury after receiving mesoscale nanoparticles encapsulated with a selective TLR9 antagonist (unmethylated CpG oligonucleotide ODN2088) or mesoscale nanoparticles encapsulating a negative control oligonucleotide. Mice treated with the encapsulated TLR9 antagonist either six hours before renal ischemia, at the time of reperfusion or 1.5 hours after reperfusion were protected against ischemic acute kidney injury. The ODN2088-encapsulated nanoparticles attenuated renal tubular necrosis, inflammation, decreased proinflammatory cytokine synthesis. neutrophil and macrophage infiltration and apoptosis, decreased DNA fragmentation and caspase 3/8 activation when compared to the negative control nanoparticle treated mice. Taken together, our studies further suggest that renal proximal tubular TLR9 activation exacerbates ischemic acute kidney injury by promoting renal tubular inflammation, apoptosis and necrosis after ischemia reperfusion. Thus, our studies suggest a potential promising therapy for ischemic acute kidney injury with selective kidney tubular targeting of TLR9 using mesoscale nanoparticle-based drug delivery.


Asunto(s)
Lesión Renal Aguda , Nanopartículas , Daño por Reperfusión , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Animales , Apoptosis , Isquemia , Riñón , Túbulos Renales Proximales , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Receptor Toll-Like 9/genética
8.
Nano Lett ; 19(7): 4343-4354, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31244242

RESUMEN

Preclinical measurements of drug exposure to specific organs and tissues is normally performed by destructive methods. Tissue-specific measurements are important, especially for drugs with intractable dose-limiting toxicities, such as doxorubicin-mediated cardiotoxicity. We developed a method to rapidly quantify doxorubicin exposure to tissues within living organisms using an implantable optical nanosensor that can be interrogated noninvasively following surgical implantation. The near-infrared fluorescence of single-walled carbon nanotubes functionalized with DNA was found to respond to doxorubicin via a large and uniform red-shift. We found this to be common to DNA-intercalating agents, including anthracycline compounds such as doxorubicin. Doxorubicin was measured in buffer and serum, intracellularly, and from single nanotubes on a surface. Doxorubicin adsorption to the DNA-suspended nanotubes did not displace DNA but bound irreversibly. We incorporated the nanosensors into an implantable membrane which allowed cumulative detection of doxorubicin exposure in vivo. On implanting the devices into different compartments, such as subcutaneously and within the peritoneal cavity, we achieved real-time, minimally invasive detection of doxorubicin injected into the peritoneal cavity, as well as compartment-specific measurements. We measured doxorubicin translocation across the peritoneal membrane in vivo. Robust, minimally invasive pharmacokinetic measurements in vivo suggest the suitability of this technology for preclinical drug discovery applications.


Asunto(s)
ADN/química , Doxorrubicina , Monitoreo de Drogas , Fluorescencia , Nanotubos de Carbono/química , Animales , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Ratones , Ratones Desnudos
9.
Kidney Int ; 90(4): 740-5, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27292222

RESUMEN

Nanomedicines have been the subject of great interest for the treatment, diagnosis, and research of disease; however, few specifically address kidney disorders. Nanotechnology can confer significant benefits to medicine, such as the targeted delivery of drugs to specific tissues. Nanomedicines in the clinic have increased drug solubility, reduced off-target side effects, and provided novel diagnostic tools. There is an increasing cohort of nanomaterials that may have implications for kidney disease. Here, we review nanomaterial properties that are potentially applicable to kidney research and therapy, and we highlight clinical areas of need that may benefit from kidney nanomedicines.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Enfermedades Renales/terapia , Riñón/efectos de los fármacos , Nanomedicina/métodos , Nanopartículas/uso terapéutico , Humanos , Nanopartículas/química , Eliminación Renal
10.
Nano Lett ; 15(4): 2358-64, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25811353

RESUMEN

We synthesized "mesoscale" nanoparticles, approximately 400 nm in diameter, which unexpectedly localized selectively in renal proximal tubules and up to 7 times more efficiently in the kidney than other organs. Although nanoparticles typically localize in the liver and spleen, modulating their size and opsonization potential allowed for stable targeting of the kidneys through a new proposed uptake mechanism. Applying this kidney targeting strategy, we anticipate use in the treatment of renal disease and the study of renal physiology.


Asunto(s)
Epitelio/química , Túbulos Renales Proximales/química , Nanocápsulas/química , Nanocápsulas/ultraestructura , Polietilenglicoles/síntesis química , Poliglactina 910/síntesis química , Animales , Femenino , Ensayo de Materiales , Ratones , Ratones Desnudos , Especificidad de Órganos , Tamaño de la Partícula , Distribución Tisular
11.
Int J Mol Sci ; 16(2): 2794-809, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25633102

RESUMEN

Alpha toxin is one of the major virulence factors secreted by Staphylococcus aureus, a bacterium that is responsible for a wide variety of infections in both community and hospital settings. Due to the prevalence of S. aureus related infections and the emergence of methicillin-resistant S. aureus, rapid and accurate diagnosis of S. aureus infections is crucial in benefiting patient health outcomes. In this study, a rigorous Systematic Evolution of Ligands by Exponential Enrichment (SELEX) variant previously developed by our laboratory was utilized to select a single-stranded DNA molecular recognition element (MRE) targeting alpha toxin with high affinity and specificity. At the end of the 12-round selection, the selected MRE had an equilibrium dissociation constant (Kd) of 93.7 ± 7.0 nM. Additionally, a modified sandwich enzyme-linked immunosorbent assay (ELISA) was developed by using the selected ssDNA MRE as the toxin-capturing element and a sensitive detection of 200 nM alpha toxin in undiluted human serum samples was achieved.


Asunto(s)
Toxinas Bacterianas/sangre , ADN de Cadena Simple/metabolismo , Staphylococcus aureus/metabolismo , Secuencia de Bases , ADN de Cadena Simple/química , Ensayo de Inmunoadsorción Enzimática , Humanos , Cinética , Conformación de Ácido Nucleico , Técnica SELEX de Producción de Aptámeros , Resonancia por Plasmón de Superficie
12.
BMC Biotechnol ; 14: 81, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25186190

RESUMEN

BACKGROUND: Prostate cancer is the most-diagnosed non-skin cancer among males in the US, and the second leading cause of cancer-related death. Current methods of treatment and diagnosis are not specific for the disease. This work identified an antibody fragment that binds selectively to a molecule on the surface of androgen-dependent prostate cancer cells but not benign prostatic cells. RESULTS: Antibody fragment identification was achieved using a library screening and enrichment strategy. A library of 109 yeast-displayed human non-immune antibody fragments was enriched for those that bind to androgen-dependent prostate cancer cells, but not to benign prostatic cells or purified prostate-specific membrane antigen (PSMA). Seven rounds of panning and fluorescence-activated cell sorting (FACS) screening yielded one antibody fragment identified from the enriched library. This molecule, termed HiR7.8, has a low-nanomolar equilibrium dissociation constant (Kd) and high specificity for androgen-dependent prostate cancer cells. CONCLUSIONS: Antibody fragment screening from a yeast-displayed library has yielded one molecule with high affinity and specificity. With further pre-clinical development, it is hoped that the antibody fragment identified using this screening strategy will be useful in the specific detection of prostate cancer and in targeted delivery of therapeutic agents for increased efficacy and reduced side effects.


Asunto(s)
Especificidad de Anticuerpos , Fragmentos de Inmunoglobulinas/química , Neoplasias de la Próstata/diagnóstico , Afinidad de Anticuerpos , Línea Celular Tumoral , Humanos , Masculino
13.
Int J Mol Sci ; 15(8): 14332-47, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25196435

RESUMEN

Widespread use of the chlorotriazine herbicide, atrazine, has led to serious environmental and human health consequences. Current methods of detecting atrazine contamination are neither rapid nor cost-effective. In this work, atrazine-specific single-stranded DNA (ssDNA) molecular recognition elements (MRE) were isolated. We utilized a stringent Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology that placed the greatest emphasis on what the MRE should not bind to. After twelve rounds of SELEX, an atrazine-specific MRE with high affinity was obtained. The equilibrium dissociation constant (Kd) of the ssDNA sequence is 0.62 ± 0.21 nM. It also has significant selectivity for atrazine over atrazine metabolites and other pesticides found in environmentally similar locations and concentrations. Furthermore, we have detected environmentally relevant atrazine concentrations in river water using this MRE. The strong affinity and selectivity of the selected atrazine-specific ssDNA validated the stringent SELEX methodology and identified a MRE that will be useful for rapid atrazine detection in environmental samples.


Asunto(s)
Atrazina/química , ADN de Cadena Simple/química , Técnicas In Vitro
14.
bioRxiv ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38617274

RESUMEN

Overactive or dysregulated cytokine expression is hallmark of many acute and chronic inflammatory diseases. This is true for acute or chronic infection, neurodegenerative diseases, autoimmune diseases, cardiovascular disease, cancer, and others. Cytokines such as interleukin-6 (IL-6) are known therapeutic targets and biomarkers for such inflammatory diseases. Platforms for cytokine detection are therefore desirable tools for both research and clinical applications. Single-walled carbon nanotubes (SWCNT) are versatile nanomaterials with near-infrared fluorescence that can serve as transducers for optical sensors. When functionalized with an analyte-specific recognition element, SWCNT emission may become sensitive and selective towards the desired target. SWCNT-aptamer sensors are easily assembled, inexpensive, and biocompatible. In this work, we introduced a nanosensor design based on SWCNT and a DNA aptamer specific to IL-6. We first evaluated several SWCNT-aptamer constructs based on this simple direct complexation method, wherein the aptamer both solubilizes the SWCNT and confers sensitivity to IL-6. The sensor limit of detection, 105 ng/mL, lies in the relevant range for pathological IL-6 levels. Upon investigation of sensor kinetics, we found rapid response within seconds of antigen addition which continued over the course of three hours. We found that this sensor construct is stable, and the aptamer is not displaced from the nanotube surface during IL-6 detection. Finally, we investigated the ability of this sensor construct to detect macrophage activation caused by bacterial lipopolysaccharides (LPS) in an in vitro model of disease, finding rapid and sensitive detection of macrophage-expressed IL-6. We are confident further development of this sensor will have novel implications for diagnosis of acute and chronic inflammatory diseases, in addition to contributing to the understanding of the role of cytokines in these diseases.

15.
ACS Sens ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934367

RESUMEN

Overactive or dysregulated cytokine expression is a hallmark of many acute and chronic inflammatory diseases. This is true for acute or chronic infections, neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, cancer, and others. Cytokines such as interleukin-6 (IL-6) are known therapeutic targets and biomarkers for such inflammatory diseases. Platforms for cytokine detection are, therefore, desirable tools for both research and clinical applications. Single-walled carbon nanotubes (SWCNT) are versatile nanomaterials with near-infrared fluorescence that can serve as transducers for optical sensors. When functionalized with an analyte-specific recognition element, SWCNT emission may become sensitive and selective toward the desired target. SWCNT-aptamer sensors are easily assembled, inexpensive, and biocompatible. In this work, we introduced a nanosensor design based on SWCNT and a DNA aptamer specific to IL-6. We first evaluated several SWCNT-aptamer constructs based on this simple direct complexation method, wherein the aptamer both solubilizes the SWCNT and confers sensitivity to IL-6. The sensor limit of detection, 105 ng/mL, lies in the relevant range for pathological IL-6 levels. Upon investigation of sensor kinetics, we found rapid response within seconds of antigen addition which continued over the course of 3 h. We found that this sensor construct is stable and the aptamer is not displaced from the nanotube surface during IL-6 detection. Finally, we investigated the ability of this sensor construct to detect macrophage activation caused by bacterial lipopolysaccharides (LPS) in an in vitro model of disease, finding rapid and sensitive detection of macrophage-expressed IL-6. We are confident that further development of this sensor will have novel implications for diagnosis of acute and chronic inflammatory diseases, in addition to contributing to the understanding of the role of cytokines in these diseases.

16.
Kidney360 ; 5(4): 618-630, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38414130

RESUMEN

Kidney diseases, both acute and chronic, are a substantial burden on individual and public health, and they continue to increase in frequency. Despite this and an intense focus on the study of disease mechanisms, few new therapeutic approaches have extended to the clinic. This is in part due to poor pharmacology of many, if not most, therapeutics with respect to the sites of kidney disease within the glomerulus or nephron. Considering this, within the past decade, and more pointedly over the past 2 years, there have been substantial developments in nanoparticle systems to deliver therapeutics to the sites of kidney disease. Here, we provide a broad overview of the various classes of nanomaterials that have been developed to improve therapeutic development for kidney diseases, the strategy used to provide kidney accumulation, and briefly the disease models they focused on, if any. We then focus on one specific system, polymeric mesoscale nanoparticles, which has broadly been used over 13 publications, demonstrating targeting of the tubular epithelium with 26-fold specificity compared with other organs. While there have been several nanomedicines that have advanced to the clinic in the past several decades, including mRNA-based coronavirus disease vaccines and others, none have focused on kidney diseases specifically. In total, we are confident that the rapid advancement of nanoscale-based kidney targeting and a concerted focus by clinicians, scientists, engineers, and other stakeholders will push one or more of these technologies into clinical trials over the next decade.


Asunto(s)
Enfermedades Renales , Humanos , Nanotecnología/métodos , Animales , Nefrología/métodos , Nanopartículas/uso terapéutico , Nanopartículas/química , Nanomedicina/métodos , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Sistemas de Liberación de Medicamentos/métodos , Sistema de Administración de Fármacos con Nanopartículas
17.
bioRxiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38617252

RESUMEN

Breast cancer is a substantial source of morbidity and mortality worldwide. It is particularly more difficult to treat at later stages, and treatment regimens depend heavily on both staging and the molecular subtype of the tumor. However, both detection and molecular analyses rely on standard imaging and histological method, which are costly, time-consuming, and lack necessary sensitivity/specificity. The estrogen receptor (ER) is, along with the progesterone receptor (PR) and human epidermal growth factor (HER-2), among the primary molecular markers which inform treatment. Patients who are negative for all three markers (triple negative breast cancer, TNBC), have fewer treatment options and a poorer prognosis. Therapeutics for ER+ patients are effective at preventing disease progression, though it is necessary to improve the speed of subtyping and distribution of rapid detection methods. In this work, we designed a near-infrared optical nanosensor using single-walled carbon nanotubes (SWCNT) as the transducer and an anti-ERα antibody as the recognition element. The nanosensor was evaluated for its response to recombinant ERα in buffer and serum prior to evaluation with ER- and ER+ immortal cell lines. We then used a minimal volume of just 10 µL from 26 breast cancer biopsy samples which were aspirated to mimic fine needle aspirates. 20 samples were ER+, while 6 were ER-, representing 13 unique patients. We evaluated the potential of the nanosensor by investigating several SWCNT chiralities through direct incubation or fractionation deployment methods. We found that the nanosensor can differentiate ER- from ER+ patient biopsies through a shift in its center wavelength upon sample addition. This was true regardless of which of the three SWCNT chiralities we observed. Receiver operating characteristic area under the curve analyses determined that the strongest classifier with an AUC of 0.94 was the (7,5) chirality after direct incubation and measurement, and without further processing. We anticipate that further testing and development of this nanosensor may push its utility toward field-deployable, rapid ER subtyping with potential for additional molecular marker profiling.

18.
ACS Appl Mater Interfaces ; 16(21): 27102-27113, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38745465

RESUMEN

Interleukin-6 (IL-6) is known to play a critical role in the progression of inflammatory diseases such as cardiovascular disease, cancer, sepsis, viral infection, neurological disease, and autoimmune diseases. Emerging diagnostic and prognostic tools, such as optical nanosensors, experience challenges in translation to the clinic in part due to protein corona formation, dampening their selectivity and sensitivity. To address this problem, we explored the rational screening of several classes of biomolecules to be employed as agents in noncovalent surface passivation as a strategy to screen interference from nonspecific proteins. Findings from this screening were applied to the detection of IL-6 by a fluorescent-antibody-conjugated single-walled carbon nanotube (SWCNT)-based nanosensor. The IL-6 nanosensor exhibited highly sensitive and specific detection after passivation with a polymer, poly-l-lysine, as demonstrated by IL-6 detection in human serum within a clinically relevant range of 25 to 25,000 pg/mL, exhibiting a limit of detection over 3 orders of magnitude lower than prior antibody-conjugated SWCNT sensors. This work holds potential for the rapid and highly sensitive detection of IL-6 in clinical settings with future application to other cytokines or disease-specific biomarkers.


Asunto(s)
Técnicas Biosensibles , Interleucina-6 , Nanotubos de Carbono , Interleucina-6/sangre , Interleucina-6/análisis , Humanos , Nanotubos de Carbono/química , Técnicas Biosensibles/métodos , Límite de Detección , Polilisina/química
19.
Sci Rep ; 14(1): 15140, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956234

RESUMEN

Rapamycin slows cystogenesis in murine models of polycystic kidney disease (PKD) but failed in clinical trials, potentially due to insufficient drug dosing. To improve drug efficiency without increasing dose, kidney-specific drug delivery may be used. Mesoscale nanoparticles (MNP) selectively target the proximal tubules in rodents. We explored whether MNPs can target cystic kidney tubules and whether rapamycin-encapsulated-MNPs (RapaMNPs) can slow cyst growth in Pkd1 knockout (KO) mice. MNP was intravenously administered in adult Pkd1KO mice. Serum and organs were harvested after 8, 24, 48 or 72 h to measure MNP localization, mTOR levels, and rapamycin concentration. Pkd1KO mice were then injected bi-weekly for 6 weeks with RapaMNP, rapamycin, or vehicle to determine drug efficacy on kidney cyst growth. Single MNP injections lead to kidney-preferential accumulation over other organs, specifically in tubules and cysts. Likewise, one RapaMNP injection resulted in higher drug delivery to the kidney compared to the liver, and displayed sustained mTOR inhibition. Bi-weekly injections with RapaMNP, rapamycin or vehicle for 6 weeks resulted in inconsistent mTOR inhibition and little change in cyst index, however. MNPs serve as an effective short-term, kidney-specific delivery system, but long-term RapaMNP failed to slow cyst progression in Pkd1KO mice.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Noqueados , Nanopartículas , Enfermedades Renales Poliquísticas , Sirolimus , Animales , Sirolimus/administración & dosificación , Sirolimus/farmacología , Ratones , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Nanopartículas/administración & dosificación , Serina-Treonina Quinasas TOR/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Sistemas de Liberación de Medicamentos , Masculino
20.
Cancer Biol Ther ; 24(1): 2170669, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36722045

RESUMEN

In clear cell renal cell carcinoma (ccRCC), activation of hypoxic signaling induces NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) expression. Over 90% of ccRCCs exhibit overexpression of NDUFA4L2, which we previously showed contributes to ccRCC proliferation and survival. The function of NDUFA4L2 in ccRCC has not been fully elucidated. NDUFA4L2 was reported to reduce mitochondrial respiration via mitochondrial complex I inhibition. We found that NDUFA4L2 expression in human ccRCC cells increases the extracellular acidification rate, indicative of elevated glycolysis. Conversely, NDUFA4L2 expression in non-cancerous kidney epithelial cells decreases oxygen consumption rate while increasing extracellular acidification rate, suggesting that a Warburg-like effect is induced by NDUFA4L2 alone. We performed mass-spectrometry (MS)-based proteomics of NDUFA4L2 associated complexes. Comparing RCC4-P (parental) ccRCC cells with RCC4 in which NDUFA4L2 is knocked out by CRISPR-Cas9 (RCC4-KO-643), we identified 3,215 proteins enriched in the NDUFA4L2 immunoprecipitates. Among the top-ranking pathways were "Metabolic Reprogramming in Cancer" and "Glycolysis Activation in Cancer (Warburg Effect)." We also show that NDUFA4L2 enhances mitochondrial fragmentation, interacts with lysosomes, and increases mitochondrial-lysosomal associations, as assessed by high-resolution fluorescence microscopy and live cell imaging. We identified 161 lysosomal proteins, including Niemann-Pick Disease Type C Intracellular Cholesterol Transporters 1 and 2 (NPC1, NPC2), that are associated with NDUFA4L2 in RCC4-P cells. RCC4-P cells have larger and decreased numbers of lysosomes relative to RCC4 NDUFA4L2 knockout cells. These findings suggest that NDUFA4L2 regulates mitochondrial-lysosomal associations and potentially lysosomal size and abundance. Consequently, NDUFA4L2 may regulate not only mitochondrial, but also lysosomal functions in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Complejo I de Transporte de Electrón , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Complejo I de Transporte de Electrón/genética , Neoplasias Renales/genética , Lisosomas , Mitocondrias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA