Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34580208

RESUMEN

The extinction of iconic species such as the dodo and the deforestation of Easter Island are emblematic of the transformative impact of human colonization of many oceanic islands, especially those in the tropics and subtropics. Yet, the interaction of prehistoric and colonial-era colonists with the forests and forest resources they encountered can be complex, varies between islands, and remains poorly understood. Long-term ecological records (e.g., fossil pollen) provide the means to understand these human impacts in relation to natural change and variability pre- and postcolonization. Here we analyze paleoecological archives in forested landscapes of the Canary Islands and Cabo Verde, first colonized approximately 2,400 to 2,000 and 490 y ago, respectively. We demonstrate sensitivity to regional climate change prior to human colonization, followed by divergent but gradual impacts of early human settlement. These contrast with more rapid transformation in the colonial era, associated with significant increases in anthropogenic pressures. In the Canary Islands, at least two native tree taxa became extinct and lowland thermophilous woodlands were largely converted to agricultural land, yet relictual subtropical laurel forests persisted with limited incursion of nonnative species. In Cabo Verde, in contrast, thermophilous woodlands were depleted and substituted by open landscapes and introduced woodlands. Differences between these two archipelagos reflect the changing cultural practices and societal interactions with forests and illustrate the importance of long-term data series in understanding the human footprint on island ecosystems, information that will be critically important for current and future forest restoration and conservation management practices in these two biodiversity hotspots.


Asunto(s)
Efectos Antropogénicos , Bosques , Cambio Climático , Paleontología , Polinesia , España
2.
Nature ; 531(7593): 229-32, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26886790

RESUMEN

The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.


Asunto(s)
Aclimatación , Cambio Climático , Ecosistema , Mapeo Geográfico , Fenómenos Fisiológicos de las Plantas , Américas , Regiones Árticas , Asia , Australia , Monitoreo del Ambiente , Actividades Humanas , Modelos Teóricos , Bosque Lluvioso , Temperatura , Factores de Tiempo , Árboles , Agua/análisis
3.
Glob Health Res Policy ; 8(1): 18, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37246227

RESUMEN

BACKGROUND: To detect and identify mosquitoes using their characteristic high-pitched sound, we have developed a smartphone application, known as the 'HumBug sensor', that records the acoustic signature of this sound, along with the time and location. This data is then sent remotely to a server where algorithms identify the species according to their distinctive acoustic signature. Whilst this system works well, a key question that remains is what mechanisms will lead to effective uptake and use of this mosquito survey tool? We addressed this question by working with local communities in rural Tanzania and providing three alternative incentives: money only, short message service (SMS) reminders and money, and SMS reminders only. We also had a control group with no incentive. METHODS: A multi-site, quantitative empirical study was conducted in four villages in Tanzania from April to August 2021. Consenting participants (n = 148) were recruited and placed into one of the three intervention arms: monetary incentives only; SMS reminders with monetary incentives; and SMS reminders only. There was also a control group (no intervention). To test effectiveness of the mechanisms, the number of audio uploads to the server of the four trial groups on their specific dates were compared. Qualitative focus group discussions and feedback surveys were also conducted to explore participants' perspectives on their participation in the study and to capture their experiences of using the HumBug sensor. RESULTS: Qualitative data analysis revealed that for many participants (37 out of 81), the main motivation expressed was to learn more about the types of mosquitoes present in their houses. Results from the quantitative empirical study indicate that the participants in the 'control' group switched on their HumBug sensors more over the 14-week period (8 out of 14 weeks) when compared to those belonging to the 'SMS reminders and monetary incentives' trial group. These findings are statistically significant (p < 0.05 or p > 0.95 under a two-sided z-test), revealing that the provision of monetary incentives and sending SMS reminders did not appear to encourage greater number of audio uploads when compared to the control. CONCLUSIONS: Knowledge on the presence of harmful mosquitoes was the strongest motive for local communities to collect and upload mosquito sound data via the HumBug sensor in rural Tanzania. This finding suggests that most efforts should be made to improve flow of real-time information back to the communities on types and risks associated with mosquitoes present in their houses.


Asunto(s)
Culicidae , Envío de Mensajes de Texto , Animales , Humanos , Teléfono Inteligente , Motivación , Tanzanía
4.
Sci Total Environ ; 825: 153955, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189215

RESUMEN

Adopting Regenerative Agriculture (RA) practices on temperate arable land can increase soil organic carbon (SOC) concentration without reducing crop yields. RA is therefore receiving much attention as a climate change mitigation strategy. However, estimating the potential change in national soil carbon stocks following adoption of RA practices is required to determine its suitability for this. Here, we use a well-validated model of soil carbon turnover (RothC) to simulate adoption of three regenerative practices (cover cropping, reduced tillage intensity and incorporation of a grass-based ley phase into arable rotations) across arable land in Great Britain (GB). We develop a modelling framework which calibrates RothC using studies of these measures from a recent systematic review, estimating the proportional increase in carbon inputs to the soil compared to conventional practice, before simulating adoption across GB. We find that cover cropping would on average increase SOC stocks by 10 t·ha-1 within 30 years of adoption across GB, potentially sequestering 6.5 megatonnes of carbon dioxide per year (MtCO2·y-1). Ley-arable systems could increase SOC stocks by 3 or 16 t·ha-1, potentially providing 2.2 or 10.6 MtCO2·y-1 of sequestration over 30 years, depending on the length of the ley-phase (one and four years, respectively, in these scenarios). In contrast, our modelling approach finds little change in soil carbon stocks when practising reduced tillage intensity. Our results indicate that adopting RA practices could make a meaningful contribution to GB agriculture reaching net zero greenhouse gas emissions despite practical constraints to their uptake.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Agricultura/métodos , Carbono , Secuestro de Carbono , Cambio Climático
5.
Science ; 372(6541): 488-491, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33926949

RESUMEN

Islands are among the last regions on Earth settled and transformed by human activities, and they provide replicated model systems for analysis of how people affect ecological functions. By analyzing 27 representative fossil pollen sequences encompassing the past 5000 years from islands globally, we quantified the rates of vegetation compositional change before and after human arrival. After human arrival, rates of turnover accelerate by a median factor of 11, with faster rates on islands colonized in the past 1500 years than for those colonized earlier. This global anthropogenic acceleration in turnover suggests that islands are on trajectories of continuing change. Strategies for biodiversity conservation and ecosystem restoration must acknowledge the long duration of human impacts and the degree to which ecological changes today differ from prehuman dynamics.


Asunto(s)
Biodiversidad , Actividades Humanas , Islas , Humanos , Polen
6.
J Ethnobiol Ethnomed ; 16(1): 33, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513199

RESUMEN

BACKGROUND: Despite a rapidly accumulating evidence base quantifying ecosystem services, the role of biodiversity in the maintenance of ecosystem services in shared human-nature environments is still understudied, as is how indigenous and agriculturally dependent communities perceive, use, and manage biodiversity. The present study aims to document traditional ethnobotanical knowledge of the ecosystem service benefits derived from wild and tended plants in rice-cultivated agroecosystems, compare this to botanical surveys, and analyze the extent to which ecosystem services contribute social-ecological resilience in the Terai Plains of Nepal. METHOD: Sampling was carried out in four landscapes, 22 Village District Committees, and 40 wards in the monsoon season. Data collection was based on transects walks to collect plant specimens, structured and semi-structured interviews, and participatory fieldwork in and around home gardens, farms, and production landscapes. We asked 180 farmers to free-list vernacular names and describe use-value of wild and tended plants in rice-cultivated agroecosystems. Uses were categorized into eight broad groupings, and 61 biomedical ailment classifications. We assessed if knowledge of plant species diversity and abundance differed with regard to caste, age, and gender. RESULTS: Nepalese farmers have a deep knowledge of the use and management of the 391 vascular plant specimens identified, which provide key provisioning, regulating, supporting, and cultural ecosystem services. Altogether, plants belong to 76 distinct plant species from 49 phylogenetic families: 56 are used to cure 61 ailments, 27 for rituals, 25 for food, 20 for timber, 17 for fuel, 17 for fodder, 11 for soil enhancement, and eight for pesticides. Four caste groups have statistically different knowledge, and younger informants report a lower average number of useful plants. CONCLUSION: Agricultural landscapes in Nepal are reservoirs of biodiversity. The knowledge of the use of wild and tended plant species in and around these farms differs by the caste and age group of land manager. Conducting research on agroecosystems will contribute to a deeper understanding of how nature is perceived by locals, to more efficient management and conservation of the breadbasket of Nepal, and to the conservation of valuable, but disappearing traditional knowledge and practice.


Asunto(s)
Biodiversidad , Etnobotánica , Conocimiento , Plantas/clasificación , Adolescente , Adulto , Agricultura , Conservación de los Recursos Naturales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nepal , Filogenia , Adulto Joven
7.
Nat Ecol Evol ; 1(7): 181, 2017 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-28812590

RESUMEN

The discovery and colonization of islands by humans has invariably resulted in their widespread ecological transformation. The small and isolated populations of many island taxa, and their evolution in the absence of humans and their introduced taxa, mean that they are particularly vulnerable to human activities. Consequently, even the most degraded islands are a focus for restoration, eradication, and monitoring programmes to protect the remaining endemic and/or relict populations. Here, we build a framework that incorporates an assessment of the degree of change from multiple baseline reference periods using long-term ecological data. The use of multiple reference points may provide information on both the variability of natural systems and responses to successive waves of cultural transformation of island ecosystems, involving, for example, the alteration of fire and grazing regimes and the introduction of non-native species. We provide exemplification of how such approaches can provide valuable information for biodiversity conservation managers of island ecosystems.

8.
Science ; 359(6379): 988-989, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29496865
9.
PLoS One ; 6(1): e16134, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-21267469

RESUMEN

Classical ecological theory predicts that changes in the availability of essential resources such as nitrogen should lead to changes in plant community composition due to differences in species-specific nutrient requirements. What remains unknown, however, is the extent to which climate change will alter the relationship between plant communities and the nitrogen cycle. During intervals of climate change, do changes in nitrogen cycling lead to vegetation change or do changes in community composition alter the nitrogen dynamics? We used long-term ecological data to determine the role of nitrogen availability in changes of forest species composition under a rapidly changing climate during the early Holocene (16k to 8k cal. yrs. BP). A statistical computational analysis of ecological data spanning 8,000 years showed that secondary succession from a coniferous to deciduous forest occurred independently of changes in the nitrogen cycle. As oak replaced pine under a warming climate, nitrogen cycling rates increased. Interestingly, the mechanism by which the species interacted with nitrogen remained stable across this threshold change in climate and in the dominant tree species. This suggests that changes in tree population density over successional time scales are not driven by nitrogen availability. Thus, current models of forest succession that incorporate the effects of available nitrogen may be over-estimating tree population responses to changes in this resource, which may result in biased predictions of future forest dynamics under climate warming.


Asunto(s)
Cambio Climático , Ecosistema , Árboles , Clima , Biología Computacional , Interpretación Estadística de Datos , Predicción , Nitrógeno/metabolismo , Ciclo del Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA