Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Ecol Evol ; 7(5): 666-674, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37127766

RESUMEN

Burgess Shale-type faunas are critical to our understanding of animal evolution during the Cambrian, giving an unrivalled view of the morphology of ancient organisms and the ecology of the earliest animal-dominated communities. Rare examples in Lower Ordovician strata such as the Fezouata Biota illustrate the subsequent evolution of ecosystems but only from before the main phase of the Great Ordovician Biodiversification Event. Later Ordovician Konservat-Lagerstätten are not directly comparable with the Burgess Shale-type faunas as they do not represent diverse, open-shelf communities, limiting our ability to track ecological development through the critical Ordovician biodiversification interval. Here we present the Castle Bank fauna: a highly diverse Middle Ordovician Burgess Shale-type fauna from Wales (UK) that is directly comparable with the Burgess Shale and Chengjiang biotas in palaeoenvironment and preservational style. The deposit includes animals with morphologies similar to the iconic Cambrian taxa Opabinia, Yohoia and Wiwaxia, combined with early examples of more derived groups such as barnacles. Many taxa such as kinorhynchs show the small sizes typical of modern faunas, illustrating post-Cambrian miniaturization. Castle Bank provides a new perspective on early animal evolution, revealing the next chapter in ecosystem development following the Chengjiang, Burgess Shale and Fezouata biotas.


Asunto(s)
Ecosistema , Fósiles , Animales , Gales , Biota
2.
Commun Biol ; 3(1): 647, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159138

RESUMEN

The Ediacaran period (635-541 Ma) was a time of major environmental change, accompanied by a transition from a microbial world to the animal world we know today. Multicellular, macroscopic organisms preserved as casts and molds in Ediacaran siliciclastic rocks are preserved worldwide and provide snapshots of early organismal, including animal, evolution. Remarkable evolutionary advances are also witnessed by diverse cellular and subcellular phosphatized microfossils described from the Doushantuo Formation in China, the only source showing a diversified assemblage of microfossils. Here, we greatly extend the known distribution of this Doushantuo-type biota in reporting an Ediacaran Lagerstätte from Laurentia (Portfjeld Formation, North Greenland), with phosphatized animal-like eggs, embryos, acritarchs, and cyanobacteria, the age of which is constrained by the Shuram-Wonoka anomaly (c. 570-560 Ma). The discovery of these Ediacaran phosphatized microfossils from outside East Asia extends the distribution of the remarkable biota to a second palaeocontinent in the other hemisphere of the Ediacaran world, considerably expanding our understanding of the temporal and environmental distribution of organisms immediately prior to the Cambrian explosion.


Asunto(s)
Evolución Biológica , Biota , Fósiles , Animales , Sedimentos Geológicos , Groenlandia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA