Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 633(8029): 442-450, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39143217

RESUMEN

Regulation of neutrophil activation is critical for disease control. Neutrophil extracellular traps (NETs), which are web-like structures composed of DNA and neutrophil-derived proteins, are formed following pro-inflammatory signals; however, if this process is uncontrolled, NETs contribute to disease pathogenesis, exacerbating inflammation and host tissue damage1,2. Here we show that myeloid inhibitory C-type lectin-like (MICL), an inhibitory C-type lectin receptor, directly recognizes DNA in NETs; this interaction is vital to regulate neutrophil activation. Loss or inhibition of MICL functionality leads to uncontrolled NET formation through the ROS-PAD4 pathway and the development of an auto-inflammatory feedback loop. We show that in the context of rheumatoid arthritis, such dysregulation leads to exacerbated pathology in both mouse models and in human patients, where autoantibodies to MICL inhibit key functions of this receptor. Of note, we also detect similarly inhibitory anti-MICL autoantibodies in patients with other diseases linked to aberrant NET formation, including lupus and severe COVID-19. By contrast, dysregulation of NET release is protective during systemic infection with the fungal pathogen Aspergillus fumigatus. Together, we show that the recognition of NETs by MICL represents a fundamental autoregulatory pathway that controls neutrophil activity and NET formation.


Asunto(s)
COVID-19 , Trampas Extracelulares , Activación Neutrófila , Neutrófilos , Arginina Deiminasa Proteína-Tipo 4 , Especies Reactivas de Oxígeno , Trampas Extracelulares/metabolismo , Trampas Extracelulares/inmunología , Humanos , Animales , Ratones , Neutrófilos/inmunología , Neutrófilos/metabolismo , Arginina Deiminasa Proteína-Tipo 4/metabolismo , COVID-19/inmunología , COVID-19/virología , Especies Reactivas de Oxígeno/metabolismo , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Artritis Reumatoide/metabolismo , Autoanticuerpos/inmunología , Femenino , Lectinas Tipo C/metabolismo , Lectinas Tipo C/inmunología , Masculino , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , ADN/metabolismo , ADN/inmunología , Aspergillus fumigatus/inmunología , Aspergillus fumigatus/patogenicidad , Retroalimentación Fisiológica , Modelos Animales de Enfermedad , Inflamación/inmunología , Inflamación/metabolismo
2.
Nature ; 555(7696): 382-386, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29489751

RESUMEN

Resistance to infection is critically dependent on the ability of pattern recognition receptors to recognize microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which are central to antifungal immunity. These receptors activate key effector mechanisms upon recognition of conserved fungal cell-wall carbohydrates. However, several other immunologically active fungal ligands have been described; these include melanin, for which the mechanism of recognition is hitherto undefined. Here we identify a C-type lectin receptor, melanin-sensing C-type lectin receptor (MelLec), that has an essential role in antifungal immunity through recognition of the naphthalene-diol unit of 1,8-dihydroxynaphthalene (DHN)-melanin. MelLec recognizes melanin in conidial spores of Aspergillus fumigatus as well as in other DHN-melanized fungi. MelLec is ubiquitously expressed by CD31+ endothelial cells in mice, and is also expressed by a sub-population of these cells that co-express epithelial cell adhesion molecule and are detected only in the lung and the liver. In mouse models, MelLec was required for protection against disseminated infection with A. fumigatus. In humans, MelLec is also expressed by myeloid cells, and we identified a single nucleotide polymorphism of this receptor that negatively affected myeloid inflammatory responses and significantly increased the susceptibility of stem-cell transplant recipients to disseminated Aspergillus infections. MelLec therefore recognizes an immunologically active component commonly found on fungi and has an essential role in protective antifungal immunity in both mice and humans.


Asunto(s)
Aspergillus fumigatus/inmunología , Lectinas Tipo C/inmunología , Melaninas/inmunología , Naftoles/inmunología , Animales , Aspergilosis/inmunología , Aspergilosis/microbiología , Aspergilosis/prevención & control , Aspergillus fumigatus/química , Aspergillus fumigatus/patogenicidad , Pared Celular/química , Pared Celular/inmunología , Femenino , Humanos , Macrófagos/inmunología , Melaninas/química , Ratones , Ratones Endogámicos C57BL , Naftoles/química , Ratas , Ratas Sprague-Dawley , Esporas Fúngicas/química , Esporas Fúngicas/inmunología , Especificidad por Sustrato
3.
Mol Microbiol ; 117(3): 632-660, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34709692

RESUMEN

The use of soluble fusion proteins of pattern recognition receptors (PRRs) used in the detection of exogenous and endogenous ligands has helped resolve the roles of PRRs in the innate immune response to pathogens, how they shape the adaptive immune response, and function in maintaining homeostasis. Using the immunoglobulin (Ig) crystallizable fragment (Fc) domain as a fusion partner, the PRR fusion proteins are soluble, stable, easily purified, have increased affinity due to the Fc homodimerization properties, and consequently have been used in a wide range of applications such as flow cytometry, screening of protein and glycan arrays, and immunofluorescent microscopy. This review will predominantly focus on the recognition of pathogens by the cell membrane-expressed glycan-binding proteins of the C-type lectin receptor (CLR) subgroup of PRRs. PRRs bind to conserved pathogen-associated molecular patterns (PAMPs), such as glycans, usually located within or on the outer surface of the pathogen. Significantly, many glycans structures are identical on both host and pathogen (e.g. the Lewis (Le) X glycan), allowing the use of Fc CLR fusion proteins with known endogenous and/or exogenous ligands as tools to identify pathogen structures that are able to interact with the immune system. Screens of highly purified pathogen-derived cell wall components have enabled identification of many unique PAMP structures recognized by CLRs. This review highlights studies using Fc CLR fusion proteins, with emphasis on the PAMPs found in fungi, bacteria, viruses, and parasites. The structure and unique features of the different CLR families is presented using examples from a broad range of microbes whenever possible.


Asunto(s)
Lectinas Tipo C , Moléculas de Patrón Molecular Asociado a Patógenos , Interacciones Huésped-Patógeno , Humanos , Lectinas Tipo C/metabolismo , Ligandos , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo
4.
Parasite Immunol ; 45(2): e12951, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36114607

RESUMEN

C-type lectin receptors (CLRs) constitute a category of innate immune receptors that play an essential role in the antifungal immune response. For over two decades, scientists have uncovered what are the fungal ligands recognized by CLRs and how these receptors initiate the immune response. Such studies have allowed the identification of genetic polymorphisms in genes encoding for CLRs or for proteins involved in the signalisation cascade they trigger. Nevertheless, our understanding of how these receptors functions and the full extent of their function during the antifungal immune response is still at its infancy. In this review, we summarize some of the main findings about CLRs in antifungal immunity and discuss what the future might hold for the field.


Asunto(s)
Antifúngicos , Micosis , Humanos , Micosis/genética , Micosis/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Inmunidad Innata
5.
Eur J Immunol ; 51(9): 2341-2344, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34114658

RESUMEN

Our data reveal that selection of enzymes for generating single cell suspensions from murine tissues influences detection of surface expression of antifungal CLRs. Using a method that most preserves receptor expression, we show that non-myeloid expression of antifungal CLRs is limited to MelLec on endothelial cells in murine mucosal tissues.


Asunto(s)
Células Endoteliales/metabolismo , Células Epiteliales/metabolismo , Hongos/inmunología , Lectinas Tipo C/metabolismo , Membrana Mucosa/inmunología , Animales , Aspergillus/inmunología , Candida/inmunología , Cryptococcus/inmunología , Ratones , Membrana Mucosa/metabolismo , Membrana Mucosa/microbiología
6.
PLoS Pathog ; 16(1): e1007927, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31999794

RESUMEN

During the course of fungal infection, pathogen recognition by the innate immune system is critical to initiate efficient protective immune responses. The primary event that triggers immune responses is the binding of Pattern Recognition Receptors (PRRs), which are expressed at the surface of host immune cells, to Pathogen-Associated Molecular Patterns (PAMPs) located predominantly in the fungal cell wall. Most fungi have mannosylated PAMPs in their cell walls and these are recognized by a range of C-type lectin receptors (CTLs). However, the precise spatial distribution of the ligands that induce immune responses within the cell walls of fungi are not well defined. We used recombinant IgG Fc-CTLs fusions of three murine mannan detecting CTLs, including dectin-2, the mannose receptor (MR) carbohydrate recognition domains (CRDs) 4-7 (CRD4-7), and human DC-SIGN (hDC-SIGN) and of the ß-1,3 glucan-binding lectin dectin-1 to map PRR ligands in the fungal cell wall of fungi grown in vitro in rich and minimal media. We show that epitopes of mannan-specific CTL receptors can be clustered or diffuse, superficial or buried in the inner cell wall. We demonstrate that PRR ligands do not correlate well with phylogenetic relationships between fungi, and that Fc-lectin binding discriminated between mannosides expressed on different cell morphologies of the same fungus. We also demonstrate CTL epitope differentiation during different phases of the growth cycle of Candida albicans and that MR and DC-SIGN labelled outer chain N-mannans whilst dectin-2 labelled core N-mannans displayed deeper in the cell wall. These immune receptor maps of fungal walls of in vitro grown cells therefore reveal remarkable spatial, temporal and chemical diversity, indicating that the triggering of immune recognition events originates from multiple physical origins at the fungal cell surface.


Asunto(s)
Pared Celular/inmunología , Hongos/inmunología , Lectinas Tipo C/inmunología , Mananos/inmunología , Micosis/inmunología , Filogenia , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/inmunología , Pared Celular/química , Pared Celular/genética , Hongos/química , Hongos/clasificación , Hongos/genética , Humanos , Lectinas Tipo C/genética , Mananos/análisis , Micosis/genética , Micosis/microbiología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología
7.
Semin Immunol ; 66: 101734, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36842304
8.
Curr Top Microbiol Immunol ; 425: 187-223, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180018

RESUMEN

Fungi are opportunistic pathogens that infect immunocompromised patients and are responsible for an estimated 1.5 million deaths every year. The antifungal innate immune response is mediated through the recognition of pathogen-associated molecular patterns (PAMPs) by the host's pattern recognition receptors (PRRs). PRRs are immune receptors that ensure the internalisation and the killing of fungal pathogens. They also mount the inflammatory response, which contributes to initiate and polarise the adaptive response, controlled by lymphocytes. Both the innate and adaptive immune responses are required to control fungal infections. The immune recognition of fungal pathogen primarily occurs at the interface between the membrane of innate immune cells and the fungal cell wall, which contains a number of PAMPs. This chapter will focus on describing the main mammalian PRRs that have been shown to bind to PAMPs from the fungal cell wall of the four main fungal pathogens: Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii. We will describe these receptors, their functions and ligands to provide the reader with an overview of how the immune system recognises fungal pathogens and responds to them.


Asunto(s)
Pared Celular , Inmunidad Innata , Micosis/inmunología , Micosis/microbiología , Moléculas de Patrón Molecular Asociado a Patógenos , Receptores de Reconocimiento de Patrones , Animales , Pared Celular/inmunología , Pared Celular/metabolismo , Humanos , Micosis/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo
9.
J Org Chem ; 86(9): 6044-6055, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33884881

RESUMEN

We describe the chemical synthesis of the fungal naphthopyrones YWA1 and fonsecin B, as well as their functionalization with an amine-spacer arm and the conjugation of the resulting molecules to three different functional tags (i.e., biotin, Oregon green, 1-[3-(succinimidyloxycarbonyl)benzyl]-4-[5-(4-methoxyphenyl)-2-oxazolyl]pyridinium bromide (PyMPO)). The naphthopyrone-biotin and -PyMPO constructs maintained the ability to bind the C-type lectin receptor MelLec, whose interaction with immunologically active fungal metabolites (i.e., 1,8-dihydroxynaphthalene-(DHN)-melanin and YWA1) is a key step in host recognition and induction of protective immune responses against Aspergillus fumigatus. The fluorescent Fonsecin B-PyMPO construct 21 was used to selectively visualize MelLec-expressing cells, thus validating the potential of this strategy for studying the role and functions of MelLec in immunity.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Humanos , Inmunidad , Melaninas , Esporas Fúngicas
10.
Eur J Immunol ; 49(12): 2127-2133, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31580478

RESUMEN

C-type lectin receptors (CLRs) are essential for multicellular existence, having diverse functions ranging from embryonic development to immune function. One subgroup of CLRs is the Dectin-1 cluster, comprising of seven receptors including MICL, CLEC-2, CLEC-12B, CLEC-9A, MelLec, Dectin-1, and LOX-1. Reflecting the larger CLR family, the Dectin-1 cluster of receptors has a broad range of ligands and functions, but importantly, is involved in numerous pathophysiological processes that regulate health and disease. Indeed, these receptors have been implicated in development, infection, regulation of inflammation, allergy, transplantation tolerance, cancer, cardiovascular disease, arthritis, and other autoimmune diseases. In this mini-review, we discuss the latest advancements in elucidating the function(s) of each of the Dectin-1 cluster CLRs, focussing on their physiological roles and involvement in disease.


Asunto(s)
Artritis/inmunología , Enfermedades Autoinmunes/inmunología , Enfermedades Cardiovasculares/inmunología , Hipersensibilidad/inmunología , Lectinas Tipo C/inmunología , Familia de Multigenes/inmunología , Neoplasias/inmunología , Inmunología del Trasplante , Animales , Artritis/genética , Enfermedades Autoinmunes/genética , Enfermedades Cardiovasculares/genética , Humanos , Hipersensibilidad/genética , Inflamación/genética , Inflamación/inmunología , Lectinas Tipo C/genética , Neoplasias/genética
11.
Adv Exp Med Biol ; 1204: 1-30, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32152941

RESUMEN

Most fungal species are harmless to humans and some exist as commensals on mucocutaneous surfaces. Yet many fungi are opportunistic pathogens, causing life-threatening invasive infections when the immune system becomes compromised. The fungal cell wall contains conserved pathogen-associated molecular patterns (PAMPs), which allow the immune system to distinguish between self (endogenous molecular patterns) and foreign material. Sensing of invasive microbial pathogens is achieved through recognition of PAMPs by pattern recognition receptors (PRRs). One of the predominant fungal-sensing PRRs is the C-type lectin receptor (CLR) family. These receptors bind to structures present on the fungal cell wall, eliciting various innate immune responses as well as shaping adaptive immunity. In this chapter, we specifically focus on the four major human fungal pathogens, Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii, reviewing our current understanding of the CLRs that are involved in their recognition and protection of the host.


Asunto(s)
Hongos/inmunología , Inmunidad Innata/inmunología , Lectinas Tipo C/inmunología , Aspergillus fumigatus/inmunología , Candida albicans/inmunología , Cryptococcus neoformans/inmunología , Humanos , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Pneumocystis carinii/inmunología
12.
Eur J Immunol ; 46(2): 381-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26558717

RESUMEN

The C-type lectin receptor (CTLR), Clec4d (MCL, CLECSF8), is a member of the Dectin-2 cluster of CTLRs, which also includes the related receptors Mincle and Dectin-2. Like Mincle, Clec4d recognizes mycobacterial cord factor, trehalose dimycolate, and we recently demonstrated its key role in anti-mycobacterial immunity in mouse and man. Here, we characterized receptor expression in naïve mice, under inflammatory conditions, and during Mycobacterium bovis BCG infection using newly generated monoclonal antibodies. In naïve mice, Clec4d was predominantly expressed on myeloid cells within the peritoneal cavity, blood, and bone marrow. Unexpectedly, basal expression of Clec4d was very low on leukocytes in the lung. However, receptor expression was significantly upregulated on pulmonary myeloid cells during M. bovis BCG infection. Moreover, Clec4d expression could be strongly induced in vitro and in vivo by various microbial stimuli, including TLR agonists, but not exogenous cytokines. Notably, we show that Clec4d requires association with the signaling adaptor FcRγ and Mincle, but not Dectin-2, for surface expression. In addition, we provide evidence that Clec4d and Mincle, but not Dectin-2, are interdependently coregulated during inflammation and infection. These data show that Clec4d is an inducible myeloid-expressed CTLR in mice, whose expression is tightly linked to that of Mincle.


Asunto(s)
Factores Cordón/metabolismo , Lectinas Tipo C/metabolismo , Leucocitos/inmunología , Mycobacterium bovis/inmunología , Células Mieloides/inmunología , Receptores de IgG/metabolismo , Receptores Inmunológicos/metabolismo , Tuberculosis/inmunología , Animales , Células Cultivadas , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Inmunidad Innata , Lectinas Tipo C/genética , Leucocitos/microbiología , Pulmón/microbiología , Pulmón/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium bovis/metabolismo , Células Mieloides/microbiología , Cavidad Peritoneal/microbiología , Cavidad Peritoneal/patología , Receptores Inmunológicos/genética , Transducción de Señal , Tuberculosis/veterinaria
13.
Ann Rheum Dis ; 75(7): 1386-91, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26275430

RESUMEN

BACKGROUND: Myeloid inhibitory C-type lectin-like receptor (MICL, Clec12A) is a C-type lectin receptor (CLR) expressed predominantly by myeloid cells. Previous studies have suggested that MICL is involved in controlling inflammation. OBJECTIVE: To determine the role of this CLR in inflammatory pathology using Clec12A(-/-) mice. METHODS: Clec12A(-/-) mice were generated commercially and primarily characterised using the collagen antibody-induced arthritis (CAIA) model. Mechanisms and progress of disease were characterised by clinical scoring, histology, flow cytometry, irradiation bone-marrow chimera generation, administration of blocking antibodies and in vivo imaging. Characterisation of MICL in patients with rheumatoid arthritis (RA) was determined by immunohistochemistry and single nucleotide polymorphism analysis. Anti-MICL antibodies were detected in patient serum by ELISA and dot-blot analysis. RESULTS: MICL-deficient animals did not present with pan-immune dysfunction, but exhibited markedly exacerbated inflammation during CAIA, owing to the inappropriate activation of myeloid cells. Polymorphisms of MICL were not associated with disease in patients with RA, but this CLR was the target of autoantibodies in a subset of patients with RA. In wild-type mice the administration of such antibodies recapitulated the Clec12A(-/-) phenotype. CONCLUSIONS: MICL plays an essential role in regulating inflammation during arthritis and is an autoantigen in a subset of patients with RA. These data suggest an entirely new mechanism underlying RA pathogenesis, whereby the threshold of myeloid cell activation can be modulated by autoantibodies that bind to cell membrane-expressed inhibitory receptors.


Asunto(s)
Artritis Experimental/genética , Artritis Reumatoide/genética , Lectinas Tipo C/fisiología , Receptores Mitogénicos/fisiología , Animales , Artritis Reumatoide/sangre , Artritis Reumatoide/etiología , Artritis Reumatoide/patología , Autoanticuerpos/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Lectinas Tipo C/deficiencia , Lectinas Tipo C/inmunología , Ratones , Células Mieloides/metabolismo , Polimorfismo Genético , Receptores Mitogénicos/deficiencia , Receptores Mitogénicos/inmunología , Membrana Sinovial/patología
14.
Int Immunol ; 25(5): 271-7, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23606632

RESUMEN

Myeloid and non-myeloid cells express members of the C-type lectin-like receptor (CTLR) family, which mediate crucial cellular functions during immunity and homeostasis. Of relevance here is the dendritic cell-associated C-type lectin-2 (Dectin-2) family of CTLRs, which includes blood dendritic cell antigen 2 (BDCA-2), dendritic cell immunoactivating receptor (DCAR), dendritic cell immunoreceptor (DCIR), Dectin-2, C-type lectin superfamily 8 (CLECSF8) and macrophage-inducible C-type lectin (Mincle). These CTLRs possess a single extracellular conserved C-type lectin-like domain and are capable of mediating intracellular signalling either directly, through integral signalling domains, or indirectly, by associating with signalling adaptor molecules. These receptors recognize a diverse range of endogenous and exogenous ligands, and can function as pattern recognition receptors for several classes of pathogens including fungi, bacteria and parasites, driving both innate and adaptive immunity. In this review, we summarize our knowledge of each of these receptors, highlighting the exciting discoveries that have been made in recent years.


Asunto(s)
Lectinas Tipo C/metabolismo , Animales , Humanos
15.
Nat Commun ; 15(1): 5817, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987270

RESUMEN

Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo. Aspergillus-derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.


Asunto(s)
Aspergillus fumigatus , Calcio , Quimiocina CXCL1 , Interleucina-8 , Melaninas , Melaninas/metabolismo , Humanos , Interleucina-8/metabolismo , Calcio/metabolismo , Quimiocina CXCL1/metabolismo , Animales , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/microbiología , Ratones , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Quimiocinas/metabolismo , Ratones Endogámicos C57BL
16.
J Biol Chem ; 287(31): 25964-74, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22689578

RESUMEN

CLECSF8 is a poorly characterized member of the "Dectin-2 cluster" of C-type lectin receptors and was originally thought to be expressed exclusively by macrophages. We show here that CLECSF8 is primarily expressed by peripheral blood neutrophils and monocytes and weakly by several subsets of peripheral blood dendritic cells. However, expression of this receptor is lost upon in vitro differentiation of monocytes into dendritic cells or macrophages. Like the other members of the Dectin-2 family, which require association of their transmembrane domains with signaling adaptors for surface expression, CLECSF8 is retained intracellularly when expressed in non-myeloid cells. However, we demonstrate that CLECSF8 does not associate with any known signaling adaptor molecule, including DAP10, DAP12, or the FcRγ chain, and we found that the C-type lectin domain of CLECSF8 was responsible for its intracellular retention. Although CLECSF8 does not contain a signaling motif in its cytoplasmic domain, we show that this receptor is capable of inducing signaling via Syk kinase in myeloid cells and that it can induce phagocytosis, proinflammatory cytokine production, and the respiratory burst. These data therefore indicate that CLECSF8 functions as an activation receptor on myeloid cells and associates with a novel adaptor molecule. Characterization of the CLECSF8-deficient mice and screening for ligands using oligosaccharide microarrays did not provide further insights into the physiological function of this receptor.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lectinas Tipo C/metabolismo , Células Mieloides/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Expresión Génica , Regulación de la Expresión Génica , Humanos , Lectinas Tipo C/química , Ratones , Células Mieloides/enzimología , Células Mieloides/fisiología , Especificidad de Órganos , Fagocitosis , Cultivo Primario de Células , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptores Inmunológicos/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Estallido Respiratorio , Transducción de Señal , Quinasa Syk , Factor de Necrosis Tumoral alfa/metabolismo
17.
Microbiol Spectr ; 11(3): e0113523, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37158741

RESUMEN

Fc-C-type lectin receptor (Fc-CTLRs) probes are soluble chimeric proteins constituted of the extracellular domain of a CTLR fused with the constant fraction (Fc) of the human IgG. These probes are useful tools to study the interaction of CTLRs with their ligands, with applications similar to those of antibodies, often in combination with widely available fluorescent antibodies targeting the Fc fragment (anti-hFc). In particular, Fc-Dectin-1 has been extensively used to study the accessibility of ß-glucans at the surface of pathogenic fungi. However, there is no universal negative control for Fc-CTLRs, making the distinction of specific versus nonspecific binding difficult. We describe here 2 negative controls for Fc-CTLRs: a Fc-control constituting of only the Fc portion, and a Fc-Dectin-1 mutant predicted to be unable to bind ß-glucans. Using these new probes, we found that while Fc-CTLRs exhibit virtually no nonspecific binding to Candida albicans yeasts, Aspergillus fumigatus resting spores strongly bind Fc-CTLRs in a nonspecific manner. Nevertheless, using the controls we describe here, we were able to demonstrate that A. fumigatus spores expose a low amount of ß-glucan. Our data highlight the necessity of appropriate negative controls for experiments involving Fc-CTLRs probes. IMPORTANCE While Fc-CTLRs probes are useful tools to study the interaction of CTLRs with ligands, their use is limited by the lack of appropriate negative controls in assays involving fungi and potentially other pathogens. We have developed and characterized 2 negative controls for Fc-CTLRs assays: Fc-control and a Fc-Dectin-1 mutant. In this manuscript, we characterize the use of these negative controls with zymosan, a ß-glucan containing particle, and 2 human pathogenic fungi, Candida albicans yeasts and Aspergillus fumigatus conidia. We show that A. fumigatus conidia nonspecifically bind Fc-CTLRs probes, demonstrating the need for appropriate negative controls in such assays.


Asunto(s)
Lectinas Tipo C , beta-Glucanos , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ligandos , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Hongos/metabolismo , Levaduras , Esporas Fúngicas/metabolismo , beta-Glucanos/metabolismo
18.
N Engl J Med ; 361(18): 1760-7, 2009 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-19864674

RESUMEN

Mucocutaneous fungal infections are typically found in patients who have no known immune defects. We describe a family in which four women who were affected by either recurrent vulvovaginal candidiasis or onychomycosis had the early-stop-codon mutation Tyr238X in the beta-glucan receptor dectin-1. The mutated form of dectin-1 was poorly expressed, did not mediate beta-glucan binding, and led to defective production of cytokines (interleukin-17, tumor necrosis factor, and interleukin-6) after stimulation with beta-glucan or Candida albicans. In contrast, fungal phagocytosis and fungal killing were normal in the patients, explaining why dectin-1 deficiency was not associated with invasive fungal infections and highlighting the specific role of dectin-1 in human mucosal antifungal defense.


Asunto(s)
Candidiasis/genética , Codón sin Sentido , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Onicomicosis/genética , Animales , Candida albicans/inmunología , Candidiasis/inmunología , Candidiasis Mucocutánea Crónica/genética , Candidiasis Vulvovaginal/genética , Citocinas/biosíntesis , Femenino , Predisposición Genética a la Enfermedad , Humanos , Lectinas Tipo C , Masculino , Mamíferos/genética , Proteínas de la Membrana/inmunología , Proteínas del Tejido Nervioso/inmunología , Linaje
19.
Elife ; 112022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36479973

RESUMEN

C-type lectin receptors (CLRs) elicit immune responses upon recognition of glycoconjugates present on pathogens and self-components. While Dectin-1 is the best-characterized CLR recognizing ß-glucan on pathogens, the endogenous targets of Dectin-1 are not fully understood. Herein, we report that human Dectin-1 is a ligand for CLEC-2, another CLR expressed on platelets. Biochemical analyses revealed that Dectin-1 is a mucin-like protein as its stalk region is highly O-glycosylated. A sialylated core 1 glycan attached to the EDxxT motif of human Dectin-1, which is absent in mouse Dectin-1, provides a ligand moiety for CLEC-2. Strikingly, the expression of human Dectin-1 in mice rescued the lethality and lymphatic defect resulting from a deficiency of Podoplanin, a known CLEC-2 ligand. This finding is the first example of an innate immune receptor also functioning as a physiological ligand to regulate ontogeny upon glycosylation.


Asunto(s)
Plaquetas , Lectinas Tipo C , Humanos , Ratones , Animales , Ligandos , Glicosilación , Plaquetas/metabolismo , Lectinas Tipo C/metabolismo
20.
J Immunol ; 182(7): 4150-7, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19299712

RESUMEN

CLEC-2 is a member of the "dectin-1 cluster" of C-type lectin-like receptors and was originally thought to be restricted to platelets. In this study, we demonstrate that murine CLEC-2 is also expressed by peripheral blood neutrophils, but only weakly by bone marrow or elicited inflammatory neutrophils. On circulating neutrophils, CLEC-2 can mediate phagocytosis of Ab-coated beads and the production of proinflammatory cytokines, including TNF-alpha, in response to the CLEC-2 ligand, rhodocytin. CLEC-2 possesses a tyrosine-based cytoplasmic motif similar to that of dectin-1, and we show using chimeric analyses that the activities of this receptor are dependent on this tyrosine. Like dectin-1, CLEC-2 can recruit the signaling kinase Syk in myeloid cells, however, stimulation of this pathway does not induce the respiratory burst. These data therefore demonstrate that CLEC-2 expression is not restricted to platelets and that it functions as an activation receptor on neutrophils.


Asunto(s)
Lectinas Tipo C/biosíntesis , Neutrófilos/metabolismo , Fagocitosis/fisiología , Animales , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Expresión Génica , Regulación de la Expresión Génica , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lectinas Tipo C/genética , Ratones , Neutrófilos/inmunología , Proteínas Tirosina Quinasas/inmunología , Proteínas Tirosina Quinasas/metabolismo , Estallido Respiratorio/inmunología , Quinasa Syk , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA