Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 17(8): e1009227, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34351901

RESUMEN

For many biological systems, a variety of simulation models exist. A new simulation model is rarely developed from scratch, but rather revises and extends an existing one. A key challenge, however, is to decide which model might be an appropriate starting point for a particular problem and why. To answer this question, we need to identify entities and activities that contributed to the development of a simulation model. Therefore, we exploit the provenance data model, PROV-DM, of the World Wide Web Consortium and, building on previous work, continue developing a PROV ontology for simulation studies. Based on a case study of 19 Wnt/ß-catenin signaling models, we identify crucial entities and activities as well as useful metadata to both capture the provenance information from individual simulation studies and relate these forming a family of models. The approach is implemented in WebProv, a web application for inserting and querying provenance information. Our specialization of PROV-DM contains the entities Research Question, Assumption, Requirement, Qualitative Model, Simulation Model, Simulation Experiment, Simulation Data, and Wet-lab Data as well as activities referring to building, calibrating, validating, and analyzing a simulation model. We show that most Wnt simulation models are connected to other Wnt models by using (parts of) these models. However, the overlap, especially regarding the Wet-lab Data used for calibration or validation of the models is small. Making these aspects of developing a model explicit and queryable is an important step for assessing and reusing simulation models more effectively. Exposing this information helps to integrate a new simulation model within a family of existing ones and may lead to the development of more robust and valid simulation models. We hope that our approach becomes part of a standardization effort and that modelers adopt the benefits of provenance when considering or creating simulation models.


Asunto(s)
Modelos Biológicos , Vía de Señalización Wnt , Animales , Fenómenos Bioquímicos , Biología Computacional , Gráficos por Computador , Simulación por Computador , Humanos , Programas Informáticos , Biología de Sistemas
2.
R Soc Open Sci ; 11(8): 240258, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39113768

RESUMEN

Social simulation studies are complex. They typically combine various data sources and hypotheses about the system's mechanisms that are integrated by intertwined processes of model building, simulation experiment execution and analysis. Various documentation approaches exist to increase the transparency and traceability of complex social simulation studies. Provenance standards enable the formalization of information on sources and activities, which contribute to the generation of an entity, in a queryable and computationally accessible manner. Provenance patterns can be defined as constraints on the relationships between specific types of activities and entities of a simulation study. In this paper, we refine the provenance pattern-based approach to address specific challenges of social agent-based simulation studies. Specifically, we focus on the activities and entities involved in collecting and analysing primary data about human decisions, and the collection and quality assessment of secondary data. We illustrate the potential of this approach by applying it to central activities and results of an agent-based simulation project and by presenting its implementation in a web-based tool.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA