Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Surg Res ; 245: 273-280, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31421373

RESUMEN

BACKGROUND: Transplantation of lungs procured after donation after circulatory death (DCD) is challenging because postmortem metabolic degradation may engender susceptibility to ischemia-reperfusion (IR) injury. Because oxidative mitochondrial DNA (mtDNA) damage has been linked to endothelial barrier disruption in other models of IR injury, here we used a fusion protein construct targeting the DNA repair 8-oxoguanine DNA glycosylase-1 (OGG1) to mitochondria (mtOGG1) to determine if enhanced repair of mtDNA damage attenuates endothelial barrier dysfunction after IR injury in a rat model of lung procurement after DCD. MATERIALS AND METHODS: Lungs excised from donor rats 1 h after cardiac death were cold stored for 2 h after which they were perfused ex vivo in the absence and presence of mt-OGG1 or an inactive mt-OGG1 mutant. Lung endothelial barrier function and mtDNA integrity were determined during and at the end of perfusion, respectively. RESULTS AND CONCLUSIONS: Mitochondria-targeted OGG1 attenuated indices of lung endothelial dysfunction incurred after a 1h post-mortem period. Oxidative lung tissue mtDNA damage as well as accumulation of proinflammatory mtDNA fragments in lung perfusate, but not nuclear DNA fragments, also were reduced by mitochondria-targeted OGG1. A repair-deficient mt-OGG1 mutant failed to protect lungs from the adverse effects of DCD procurement. CONCLUSIONS: These findings suggest that endothelial barrier dysfunction in lungs procured after DCD is driven by mtDNA damage and point to strategies to enhance mtDNA repair in concert with EVLP as a means of alleviating DCD-related lung IR injury.


Asunto(s)
ADN Glicosilasas/administración & dosificación , Endotelio Vascular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas Recombinantes de Fusión/administración & dosificación , Daño por Reperfusión/prevención & control , Aloinjertos/irrigación sanguínea , Aloinjertos/citología , Aloinjertos/efectos de los fármacos , Animales , ADN Glicosilasas/genética , Reparación del ADN/efectos de los fármacos , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/genética , Modelos Animales de Enfermedad , Endotelio Vascular/citología , Endotelio Vascular/patología , Humanos , Pulmón/irrigación sanguínea , Pulmón/citología , Pulmón/efectos de los fármacos , Trasplante de Pulmón , Masculino , Mitocondrias/genética , Mitocondrias/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Perfusión/métodos , Ratas , Proteínas Recombinantes de Fusión/genética , Daño por Reperfusión/patología , Recolección de Tejidos y Órganos/métodos
2.
Am J Physiol Heart Circ Physiol ; 314(2): H311-H321, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29101177

RESUMEN

Oxidative stress results in mtDNA damage and contributes to myocardial cell death. mtDNA repair enzymes are crucial for mtDNA repair and cell survival. We investigated a novel, mitochondria-targeted fusion protein (Exscien1-III) containing endonuclease III in myocardial ischemia-reperfusion injury and transverse aortic constriction (TAC)-induced heart failure. Male C57/BL6J mice (10-12 wk) were subjected to 45 min of myocardial ischemia and either 24 h or 4 wk of reperfusion. Exscien1-III (4 mg/kg ip) or vehicle was administered at the time of reperfusion. Male C57/BL6J mice were subjected to TAC, and Exscien1-III (4 mg/kg i.p) or vehicle was administered daily starting at 3 wk post-TAC and continued for 12 wk. Echocardiography was performed to assess left ventricular (LV) structure and function. Exscien1-III reduced myocardial infarct size ( P < 0.01) at 24 h of reperfusion and preserved LV ejection fraction at 4 wk postmyocardial ischemia. Exscien1-III attenuated TAC-induced LV dilation and dysfunction at 6-12 wk post-TAC ( P < 0.05). Exscien1-III reduced ( P < 0.05) cardiac hypertrophy and maladaptive remodeling after TAC. Assessment of cardiac mitochondria showed that Exscien1-III localized to mitochondria and increased mitochondrial antioxidant and reduced apoptotic markers. In conclusion, our results indicate that administration of Exscien1-III provides significant protection against myocardial ischemia and preserves myocardial structure and LV performance in the setting of heart failure. NEW & NOTEWORTHY Oxidative stress-induced mitochondrial DNA damage is a prominent feature in the pathogenesis of cardiovascular diseases. In the present study, we demonstrate the efficacy of a novel, mitochondria-targeted fusion protein that traffics endonuclease III specifically for mitochondrial DNA repair in two well-characterized murine models of cardiac injury and failure.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Daño del ADN/efectos de los fármacos , ADN Mitocondrial/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Izquierda/tratamiento farmacológico , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Transducción de Señal/efectos de los fármacos , Volumen Sistólico/efectos de los fármacos , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología
3.
Nucleic Acids Res ; 43(9): e62, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25820427

RESUMEN

Mutations in human mitochondrial DNA (mtDNA) can cause mitochondrial disease and have been associated with neurodegenerative disorders, cancer, diabetes and aging. Yet our progress toward delineating the precise contributions of mtDNA mutations to these conditions is impeded by the limited availability of faithful transmitochondrial animal models. Here, we report a method for the isolation of mutations in mouse mtDNA and its implementation for the generation of a collection of over 150 cell lines suitable for the production of transmitochondrial mice. This method is based on the limited mutagenesis of mtDNA by proofreading-deficient DNA-polymerase γ followed by segregation of the resulting highly heteroplasmic mtDNA population by means of intracellular cloning. Among generated cell lines, we identify nine which carry mutations affecting the same amino acid or nucleotide positions as in human disease, including a mutation in the ND4 gene responsible for 70% of Leber Hereditary Optic Neuropathies (LHON). Similar to their human counterparts, cybrids carrying the homoplasmic mouse LHON mutation demonstrated reduced respiration, reduced ATP content and elevated production of mitochondrial reactive oxygen species (ROS). The generated resource of mouse mtDNA mutants will be useful both in modeling human mitochondrial disease and in understanding the mechanisms of ROS production mediated by mutations in mtDNA.


Asunto(s)
ADN Mitocondrial/química , Modelos Animales de Enfermedad , Ratones/genética , Enfermedades Mitocondriales/genética , Mutagénesis , Mutación , Animales , Ingeniería Celular/métodos , Línea Celular , Respiración de la Célula , Humanos , Especies Reactivas de Oxígeno/metabolismo
4.
Basic Res Cardiol ; 111(3): 29, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27040114

RESUMEN

Mitochondrial dysfunction in obesity and diabetes can be caused by excessive production of free radicals, which can damage mitochondrial DNA. Because mitochondrial DNA plays a key role in the production of ATP necessary for cardiac work, we hypothesized that mitochondrial dysfunction, induced by mitochondrial DNA damage, uncouples coronary blood flow from cardiac work. Myocardial blood flow (contrast echocardiography) was measured in Zucker lean (ZLN) and obese fatty (ZOF) rats during increased cardiac metabolism (product of heart rate and arterial pressure, i.v. norepinephrine). In ZLN increased metabolism augmented coronary blood flow, but in ZOF metabolic hyperemia was attenuated. Mitochondrial respiration was impaired and ROS production was greater in ZOF than ZLN. These were associated with mitochondrial DNA (mtDNA) damage in ZOF. To determine if coronary metabolic dilation, the hyperemic response induced by heightened cardiac metabolism, is linked to mitochondrial function we introduced recombinant proteins (intravenously or intraperitoneally) in ZLN and ZOF to fragment or repair mtDNA, respectively. Repair of mtDNA damage restored mitochondrial function and metabolic dilation, and reduced ROS production in ZOF; whereas induction of mtDNA damage in ZLN reduced mitochondrial function, increased ROS production, and attenuated metabolic dilation. Adequate metabolic dilation was also associated with the extracellular release of ADP, ATP, and H2O2 by cardiac myocytes; whereas myocytes from rats with impaired dilation released only H2O2. In conclusion, our results suggest that mitochondrial function plays a seminal role in connecting myocardial blood flow to metabolism, and integrity of mtDNA is central to this process.


Asunto(s)
Vasos Coronarios/fisiopatología , ADN Mitocondrial/metabolismo , Síndrome Metabólico/fisiopatología , Mitocondrias/metabolismo , Animales , Vasos Coronarios/metabolismo , Daño del ADN/fisiología , Fragmentación del ADN , Modelos Animales de Enfermedad , Síndrome Metabólico/metabolismo , Estrés Oxidativo/fisiología , Ratas , Ratas Zucker , Especies Reactivas de Oxígeno/metabolismo , Vasodilatación/fisiología
5.
Basic Res Cardiol ; 110(2): 3, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25595210

RESUMEN

Recent reports indicate that elevating DNA glycosylase/AP lyase repair enzyme activity offers marked cytoprotection in cultured cells and a variety of injury models. In this study, we measured the effect of EndoIII, a fusion protein construct that traffics Endonuclease III, a DNA glycosylase/AP lyase, to the mitochondria, on infarct size in a rat model of myocardial ischemia/reperfusion. Open-chest, anesthetized rats were subjected to 30 min of occlusion of a coronary artery followed by 2 h of reperfusion. An intravenous bolus of EndoIII, 8 mg/kg, just prior to reperfusion reduced infarct size from 43.8 ± 1.4% of the risk zone in control animals to 24.0 ± 1.3% with no detectable hemodynamic effect. Neither EndoIII's vehicle nor an enzymatically inactive EndoIII mutant (K120Q) offered any protection. The magnitude of EndoIII's protection was comparable to that seen with the platelet aggregation inhibitor cangrelor (25.0 ± 1.8% infarction of risk zone). Because loading with a P2Y12 receptor blocker to inhibit platelets is currently the standard of care for treatment of acute myocardial infarction, we tested whether EndoIII could further reduce infarct size in rats treated with a maximally protective dose of cangrelor. The combination reduced infarct size to 15.1 ± 0.9% which was significantly smaller than that seen with either cangrelor or EndoIII alone. Protection from cangrelor but not EndoIII was abrogated by pharmacologic blockade of phosphatidylinositol-3 kinase or adenosine receptors indicating differing cellular mechanisms. We hypothesized that EndoIII protected the heart from spreading necrosis by preventing the release of proinflammatory fragments of mitochondrial DNA (mtDNA) into the heart tissue. In support of this hypothesis, an intravenous bolus at reperfusion of deoxyribonuclease I (DNase I) which should degrade any DNA fragments escaping into the extracellular space was as protective as EndoIII. Furthermore, the combination of EndoIII and DNase I produced additive protection. While EndoIII would maintain mitochondrial integrity in many of the ischemic cardiomyocytes, DNase I would further prevent mtDNA released from those cells that EndoIII could not save from propagating further necrosis. Thus, our mtDNA hypothesis would predict additive protection. Finally to demonstrate the toxicity of mtDNA, isolated hearts were subjected to 15 min of global ischemia. Infarct size doubled when the coronary vasculature was filled with mtDNA fragments during the period of global ischemia. To our knowledge, EndoIII and DNase are the first agents that can both be given at reperfusion and add to the protection of a P2Y12 blocker, and thus should be effective in today's patient with acute myocardial infarction.


Asunto(s)
Endodesoxirribonucleasas/farmacología , Mitocondrias/efectos de los fármacos , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/prevención & control , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Animales , Desoxirribonucleasa I/farmacología , Modelos Animales de Enfermedad , Hemodinámica/efectos de los fármacos , Masculino , Antagonistas del Receptor Purinérgico P2Y/farmacología , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/farmacología
6.
J Surg Orthop Adv ; 24(4): 209-12, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26731382

RESUMEN

The hypothesis was that agents delivered intra-articularly after knee arthroscopy will be diluted by residual arthroscopic fluid. Diagnostic arthroscopy was performed on six cadaver knees. Each procedure was followed by an intra-articular injection of a dye solution. Intra-articular aspirates were gathered from three locations. With significance set at p < .05, the aspirates were compared with the initial dye concentration and with each other. No significant difference was noted among the sites, indicating that no specific knee area was exposed to a higher dye concentration. There was a significant difference in dye concentration of the aspirates when compared with the dye's initial concentration. The concentration of fluid injected intra-articularly after arthroscopy was diluted by 27%. These data indicate that agents injected into the knee postarthroscopy are significantly diluted. In vitro and in vivo experiments evaluating chondrotoxicity of various anesthetic agents may not accurately reflect the actual concentration of the drug within the knee joint unless dilution effects are taken into account.


Asunto(s)
Artroscopía , Bupivacaína/administración & dosificación , Técnicas de Dilución del Indicador , Articulación de la Rodilla/metabolismo , Dolor Postoperatorio/tratamiento farmacológico , Cuidados Posoperatorios/métodos , Anciano , Anciano de 80 o más Años , Anestésicos Locales/administración & dosificación , Anestésicos Locales/farmacocinética , Bupivacaína/farmacocinética , Cadáver , Humanos , Inyecciones Intraarticulares , Articulación de la Rodilla/cirugía , Dimensión del Dolor
7.
J Biol Chem ; 288(37): 26594-605, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23884459

RESUMEN

Multiple lines of evidence support the notion that DNA ligase III (LIG3), the only DNA ligase found in mitochondria, is essential for viability in both whole organisms and in cultured cells. Previous attempts to generate cells devoid of mitochondrial DNA ligase failed. Here, we report, for the first time, the derivation of viable LIG3-deficient mouse embryonic fibroblasts. These cells lack mtDNA and are auxotrophic for uridine and pyruvate, which may explain the apparent lethality of the Lig3 knock-out observed in cultured cells in previous studies. Cells with severely reduced expression of LIG3 maintain normal mtDNA copy number and respiration but show reduced viability in the face of alkylating and oxidative damage, increased mtDNA degradation in response to oxidative damage, and slow recovery from mtDNA depletion. Our findings clarify the cellular role of LIG3 and establish that the loss of viability in LIG3-deficient cells is conditional and secondary to the ρ(0) phenotype.


Asunto(s)
ADN Ligasas/metabolismo , ADN Mitocondrial/genética , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Alelos , Animales , Cruzamientos Genéticos , Daño del ADN , ADN Ligasa (ATP) , ADN Ligasas/genética , Reparación del ADN , Fibroblastos/metabolismo , Genotipo , Células HeLa , Humanos , Ratones , Microscopía Confocal , Proteínas Mitocondriales/genética , Oligonucleótidos/genética , Estrés Oxidativo , Fenotipo , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas de Xenopus
8.
Am J Physiol Lung Cell Mol Physiol ; 304(4): L287-97, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23241530

RESUMEN

This study tested the hypothesis that oxidative mitochondrial-targeted DNA (mtDNA) damage triggered ventilator-induced lung injury (VILI). Control mice and mice infused with a fusion protein targeting the DNA repair enzyme, 8-oxoguanine-DNA glycosylase 1 (OGG1) to mitochondria were mechanically ventilated with a range of peak inflation pressures (PIP) for specified durations. In minimal VILI (1 h at 40 cmH(2)O PIP), lung total extravascular albumin space increased 2.8-fold even though neither lung wet/dry (W/D) weight ratios nor bronchoalveolar lavage (BAL) macrophage inflammatory protein (MIP)-2 or IL-6 failed to differ from nonventilated or low PIP controls. This increase in albumin space was attenuated by OGG1. Moderately severe VILI (2 h at 40 cmH(2)O PIP) produced a 25-fold increase in total extravascular albumin space, a 60% increase in W/D weight ratio and marked increases in BAL MIP-2 and IL-6, accompanied by oxidative mitochondrial DNA damage, as well as decreases in the total tissue glutathione (GSH) and GSH/GSSH ratio compared with nonventilated lungs. All of these injury indices were attenuated in OGG1-treated mice. At the highest level of VILI (2 h at 50 cmH(2)O PIP), OGG1 failed to protect against massive lung edema and BAL cytokines or against depletion of the tissue GSH pool. Interestingly, whereas untreated mice died before completing the 2-h protocol, OGG1-treated mice lived for the duration of observation. Thus mitochondrially targeted OGG1 prevented VILI over a range of ventilation times and pressures and enhanced survival in the most severely injured group. These findings support the concept that oxidative mtDNA damage caused by high PIP triggers induction of acute lung inflammation and injury.


Asunto(s)
ADN Glicosilasas/uso terapéutico , Reparación del ADN/fisiología , ADN Mitocondrial/efectos de los fármacos , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Animales , Quimiocina CXCL2/metabolismo , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/fisiología , Glutatión/metabolismo , Interleucina-6/metabolismo , Estimación de Kaplan-Meier , Ratones , Mitocondrias/enzimología , Edema Pulmonar/tratamiento farmacológico , Edema Pulmonar/etiología , Lesión Pulmonar Inducida por Ventilación Mecánica/mortalidad
9.
Am J Physiol Lung Cell Mol Physiol ; 301(6): L892-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21890512

RESUMEN

In cultured pulmonary artery endothelial cells and other cell types, overexpression of mt-targeted DNA repair enzymes protects against oxidant-induced mitochondrial DNA (mtDNA) damage and cell death. Whether mtDNA integrity governs functional properties of the endothelium in the intact pulmonary circulation is unknown. Accordingly, the present study used isolated, buffer-perfused rat lungs to determine whether fusion proteins targeting 8-oxoguanine DNA glycosylase 1 (Ogg1) or endonuclease III (Endo III) to mitochondria attenuated mtDNA damage and vascular barrier dysfunction evoked by glucose oxidase (GOX)-generated hydrogen peroxide. We found that both Endo III and Ogg1 fusion proteins accumulated in lung cell mitochondria within 30 min of addition to the perfusion medium. Both constructs prevented GOX-induced increases in the vascular filtration coefficient. Although GOX-induced nuclear DNA damage could not be detected, quantitative Southern blot analysis revealed substantial GOX-induced oxidative mtDNA damage that was prevented by pretreatment with both fusion proteins. The Ogg1 construct also reversed preexisting GOX-induced vascular barrier dysfunction and oxidative mtDNA damage. Collectively, these findings support the ideas that mtDNA is a sentinel molecule governing lung vascular barrier responses to oxidant stress in the intact lung and that the mtDNA repair pathway could be a target for pharmacological intervention in oxidant lung injury.


Asunto(s)
ADN Mitocondrial/genética , Células Endoteliales/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Oxidantes/farmacología , Animales , Fraccionamiento Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/enzimología , Daño del ADN , ADN Glicosilasas/farmacología , ADN Glicosilasas/fisiología , Endodesoxirribonucleasas/farmacología , Endodesoxirribonucleasas/fisiología , Células Endoteliales/metabolismo , Endotelio/metabolismo , Glucosa Oxidasa/química , Glucosa Oxidasa/farmacología , Glucosa Oxidasa/fisiología , Técnicas In Vitro , Pulmón/citología , Pulmón/efectos de los fármacos , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Permeabilidad , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/fisiología
10.
Nucleic Acids Res ; 37(8): 2539-48, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19264794

RESUMEN

Mitochondrial DNA (mtDNA) is located in close proximity of the respiratory chains, which are the main cellular source of reactive oxygen species (ROS). ROS can induce oxidative base lesions in mtDNA and are believed to be an important cause of the mtDNA mutations, which accumulate with aging and in diseased states. However, recent studies indicate that cumulative levels of base substitutions in mtDNA can be very low even in old individuals. Considering the reduced complement of DNA repair pathways available in mitochondria and higher susceptibility of mtDNA to oxidative damage than nDNA, it is presently unclear how mitochondria manage to maintain the integrity of their genetic information in the face of the permanent exposure to ROS. Here we show that oxidative stress can lead to the degradation of mtDNA and that strand breaks and abasic sites prevail over mutagenic base lesions in ROS-damaged mtDNA. Furthermore, we found that inhibition of base excision repair enhanced mtDNA degradation in response to both oxidative and alkylating damage. These observations suggest a novel mechanism for the protection of mtDNA against oxidative insults whereby a higher incidence of lesions to the sugar-phosphate backbone induces degradation of damaged mtDNA and prevents the accumulation of mutagenic base lesions.


Asunto(s)
Daño del ADN , ADN Mitocondrial/metabolismo , Estrés Oxidativo , Anciano de 80 o más Años , Envejecimiento , Línea Celular Tumoral , Clonación Molecular , Reparación del ADN , ADN Mitocondrial/química , Femenino , Humanos , Peróxido de Hidrógeno/toxicidad , Masculino , Metilmetanosulfonato/toxicidad , Mutagénesis , Reacción en Cadena de la Polimerasa , Especies Reactivas de Oxígeno/metabolismo , Análisis de Secuencia de ADN , Superóxidos/metabolismo
11.
J Biol Chem ; 284(52): 36191-36201, 2009 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-19840931

RESUMEN

Previous work from our laboratory has focused on mitochondrial DNA (mtDNA) repair and cellular viability. However, other events occur prior to the initiation of apoptosis in cells. Because of the importance of mtDNA in ATP production and of ATP in fuel cell cycle progression, we asked whether mtDNA damage was an upstream signal leading to cell cycle arrest. Using quantitative alkaline Southern blot technology, we found that exposure to menadione produced detectable mtDNA damage in HeLa cells that correlated with an S phase cell cycle arrest. To determine whether mtDNA damage was causatively linked to the observed cell cycle arrest, experiments were performed utilizing a MTS-hOGG1-Tat fusion protein to target the hOGG1 repair enzyme to mitochondria and enhance mtDNA repair. The results revealed that the transduction of MTS-hOGG1-Tat into HeLa cells alleviated the cell cycle block following an oxidative insult. Furthermore, mechanistic studies showed that Chk2 phosphorylation was enhanced following menadione exposure. Treatment of the HeLa cells with the hOGG1 fusion protein prior to menadione exposure resulted in an increase in the rate of Chk2 dephosphorylation. These results strongly support a direct link between mtDNA damage and cell cycle arrest.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/fisiología , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Quinasa de Punto de Control 2 , Daño del ADN/efectos de los fármacos , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Reparación del ADN/efectos de los fármacos , ADN Mitocondrial/genética , Células HeLa , Humanos , Mitocondrias/genética , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Fase S/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Vitamina K 3/farmacología , Vitaminas/farmacología
12.
Toxicol Appl Pharmacol ; 240(3): 348-54, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19632256

RESUMEN

Thiazolidinediones (TZDs), such as troglitazone (TRO) and rosiglitazone (ROSI), improve insulin resistance by acting as ligands for the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma). TRO was withdrawn from the market because of reports of serious hepatotoxicity. A growing body of evidence suggests that TRO caused mitochondrial dysfunction and induction of apoptosis in human hepatocytes but its mechanisms of action remain unclear. We hypothesized that damage to mitochondrial DNA (mtDNA) is an initiating event involved in TRO-induced mitochondrial dysfunction and hepatotoxicity. Primary human hepatocytes were exposed to TRO and ROSI. The results obtained revealed that TRO, but not ROSI at equimolar concentrations, caused a substantial increase in mtDNA damage and decreased ATP production and cellular viability. The reactive oxygen species (ROS) scavenger, N-acetyl cystein (NAC), significantly diminished the TRO-induced cytotoxicity, suggesting involvement of ROS in TRO-induced hepatocyte cytotoxicity. The PPARgamma antagonist (GW9662) did not block the TRO-induced decrease in cell viability, indicating that the TRO-induced hepatotoxicity is PPARgamma-independent. Furthermore, TRO induced hepatocyte apoptosis, caspase-3 cleavage and cytochrome c release. Targeting of a DNA repair protein to mitochondria by protein transduction using a fusion protein containing the DNA repair enzyme Endonuclease III (EndoIII) from Escherichia coli, a mitochondrial translocation sequence (MTS) and the protein transduction domain (PTD) from HIV-1 TAT protein protected hepatocytes against TRO-induced toxicity. Overall, our results indicate that significant mtDNA damage caused by TRO is a prime initiator of the hepatoxicity caused by this drug.


Asunto(s)
Apoptosis/efectos de los fármacos , Cromanos/farmacología , Daño del ADN , ADN Mitocondrial/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hipoglucemiantes/farmacología , Tiazolidinedionas/farmacología , Adenosina Trifosfato/metabolismo , Células Cultivadas , ADN Mitocondrial/fisiología , Ensayo de Inmunoadsorción Enzimática , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , PPAR gamma/antagonistas & inhibidores , Rosiglitazona , Troglitazona
13.
Methods Mol Biol ; 554: 233-49, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19513678

RESUMEN

The mitochondrial genome represents a target for exogenous and endogenous damage. Its necessity for successful electron transport makes its repair valuable to the cell. Previous work from our lab has shown that mitochondrial DNA (mtDNA) can be repaired in mammalian cells, and the use of mitochondrial-targeted repair proteins can augment repair to enhance viability following genotoxic stress. In addition, it has also been shown that other repair enzymes that are targeted to the mitochondria can sensitize the cell to DNA damaging agents, thereby aiding the effectiveness of certain chemotherapeutic agents. The methods herein describe the development of mitochondrial-targeted proteins using plasmids or protein transduction domains. It includes the utilization of these constructs to create stably transfected cell lines, transiently transfected cell lines, viral-mediated transduction, and protein transduction domain-mediated mitochondrial protein localization. The end result will be a mammalian cell that expresses the mitochondrial-targeted protein of interest.


Asunto(s)
Reparación del ADN , ADN Mitocondrial/genética , Proteínas de Unión al ADN/metabolismo , Productos del Gen tat/metabolismo , Técnicas de Transferencia de Gen , Mitocondrias/genética , Mitocondrias/metabolismo , Animales , Southern Blotting , Supervivencia Celular , Daño del ADN , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Plásmidos , Transporte de Proteínas , Transducción Genética , Transfección
14.
Mech Ageing Dev ; 129(7-8): 383-90, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18417187

RESUMEN

Mitochondria are organelles which, according to the endosymbiosis theory, evolved from purpurbacteria approximately 1.5 billion years ago. One of the unique features of mitochondria is that they have their own genome. Mitochondria replicate and transcribe their DNA semiautonomously. Like nuclear DNA, mitochondrial DNA (mtDNA) is constantly exposed to DNA damaging agents. Regarding the repair of mtDNA, the prevailing concept for many years was that mtDNA molecules suffering an excess of damage would simply be degraded to be replaced by newly generated successors copied from undamaged genomes. However, evidence now clearly shows that mitochondria contain the machinery to repair the damage to their genomes caused by certain endogenous or exogenous damaging agents. The link between mtDNA damage and repair to aging, neurodegeneration, and carcinogenesis-associated processes is the subject of this review.


Asunto(s)
Envejecimiento/genética , Reparación del ADN , ADN Mitocondrial/metabolismo , Genoma Mitocondrial , Neoplasias/genética , Enfermedades Neurodegenerativas/genética , Daño del ADN , Humanos , Mutación
15.
Diabetes ; 55(4): 1022-8, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16567524

RESUMEN

Chronic exposure to elevated levels of free fatty acids (FFAs) impairs pancreatic beta-cell function and contributes to the decline of insulin secretion in type 2 diabetes. Previously, we reported that FFAs caused increased nitric oxide (NO) production, which damaged mitochondrial DNA (mtDNA) and ultimately led to apoptosis in INS-1 cells. To firmly establish the link between FFA-generated mtDNA damage and apoptosis, we stably transfected INS-1 cells with an expression vector containing the gene for the DNA repair enzyme human 8-oxoguanine DNA glycosylase/apurinic lyase (hOGG1) downstream of the mitochondrial targeting sequence (MTS) from manganese superoxide dismutase. Successful integration of MTS-OGG1 into the INS-1 cellular genome was confirmed by Southern blot analysis. Western blots and enzyme activity assays revealed that hOGG1 was targeted to mitochondria and the recombinant enzyme was active. MTS-OGG1 cells showed a significant decrease in FFA-induced mtDNA damage compared with vector-only transfectants. Additionally, hOGG1 overexpression in mitochondria decreased FFA-induced inhibition of ATP production and protected INS-1 cells from apoptosis. These results indicate that mtDNA damage plays a pivotal role in FFA-induced beta-cell dysfunction and apoptosis. Therefore, targeting DNA repair enzymes into beta-cell mitochondria could be a potential therapeutic strategy for preventing or delaying the onset of type 2 diabetes symptoms.


Asunto(s)
Apoptosis/efectos de los fármacos , ADN Glicosilasas/metabolismo , Ácidos Grasos no Esterificados/farmacología , Células Secretoras de Insulina/fisiología , Animales , Daño del ADN , Fragmentación del ADN , ADN Glicosilasas/deficiencia , ADN Mitocondrial/genética , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Mitocondrias/enzimología , Ratas , Transfección
16.
Free Radic Biol Med ; 43(12): 1616-26, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18037127

RESUMEN

Reactive oxygen species associated with hypoxic signaling in pulmonary arterial endothelial cells (PAECs) oxidatively modify specific nucleotides in the hypoxic response element (HRE) of the VEGF gene (FASEB J.19:387-394; 2005). In this study, we determined in PAECs if hypoxia caused genome-wide oxidative modifications or if they were restricted to the promoters of genes differentially regulated by hypoxia. Comet assays indicated that there were no differences between normoxic and hypoxic PAECs in terms of global DNA damage. However, a simple PCR-based method involving DNA amplification before and after treatment with formamidopyrimidine DNA glycosylase (Fpg), a bacterial DNA repair enzyme that cleaves at sites of purine base oxidation, revealed that hypoxia caused modifications in the HREs of the hypoxia-inducible VEGF, HO-1, and ET-1 genes which coincided with accumulation of their respective mRNA transcripts. Promoter sequences not involved with hypoxic induction and coding regions of these genes failed to display Fpg-sensitive sites. Oxidative modifications also were not detected in sequences of the hypoxia down-regulated ornithine decarboxylase and TFAM genes or the constitutively expressed beta-actin gene. These findings show that hypoxia-mediated oxidative DNA modifications cluster in functionally relevant promoter sequences in hypoxia-inducible genes and suggest that such oxidative modifications may be biologically significant.


Asunto(s)
Hipoxia de la Célula/genética , Hipoxia de la Célula/fisiología , Animales , Secuencia de Bases , Células Cultivadas , ADN/química , ADN/genética , Daño del ADN , Cartilla de ADN/genética , Células Endoteliales/metabolismo , Endotelina-1/genética , Regulación de la Expresión Génica , Hemo Oxigenasa (Desciclizante)/genética , Oxidación-Reducción , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética
17.
Nucleic Acids Res ; 33(14): 4660-71, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16107556

RESUMEN

Neurodegeneration can occur as a result of endogenous oxidative stress. Primary cerebellar granule cells were used in this study to determine if mitochondrial DNA (mtDNA) repair deficiencies correlate with oxidative stress-induced apoptosis in neuronal cells. Granule cells exhibited a significantly higher intracellular oxidative state compared with primary astrocytes as well as increases in reductants, such as glutathione, and redox sensitive signaling molecules, such as AP endonuclease/redox effector factor-1. Cerebellar granule cultures also exhibited an increased susceptibility to exogenous oxidative stress. Menadione (50 muM) produced twice as many lesions in granule cell mtDNA compared with astrocytes, and granule cell mtDNA repair was significantly less efficient. A decreased capacity to repair oxidative mtDNA damage correlates strongly with mitochondrial initiated apoptosis in these neuronal cultures. Interestingly, the mitochondrial activities of initiators for base excision repair (BER), the bifunctional glycosylase/AP lyases as well as AP endonuclease, were significantly higher in cerebellar granule cells compared with astrocytes. The increased mitochondrial AP endonuclease activity in combination with decreased polymerase gamma activity may cause an imbalance in oxidative BER leading to an increased production and persistence of mtDNA damage in neurons when treated with menadione. This study provides evidence linking neuronal mtDNA repair capacity with oxidative stress-related neurodegeneration.


Asunto(s)
Apoptosis , Cerebelo/citología , Reparación del ADN , ADN Mitocondrial/metabolismo , Neuronas/metabolismo , Estrés Oxidativo , Animales , Antioxidantes/metabolismo , Células Cultivadas , Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , Neuronas/citología , Neuronas/enzimología , Ratas , Ratas Sprague-Dawley
18.
Shock ; 48(1): 54-60, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28125528

RESUMEN

Although studies in rat cultured pulmonary artery endothelial cells, perfused lungs, and intact mice support the concept that oxidative mitochondrial (mt) DNA damage triggers acute lung injury (ALI), it has not yet been determined whether enhanced mtDNA repair forestalls development of ALI and its progression to multiple organ system failure (MOSF). Accordingly, here we examined the effect of a fusion protein construct targeting the DNA glycosylase, Ogg1, to mitochondria in a rat model intra-tracheal Pseudomonas aeruginosa (strain 103; PA103)-induced ALI and MOSF. Relative to controls, animals given PA103 displayed increases in lung vascular filtration coefficient accompanied by transient lung tissue oxidative mtDNA damage and variable changes in mtDNA copy number without evidence of nuclear DNA damage. The approximate 40% of animals surviving 24 h after bacterial administration exhibited multiple organ dysfunction, manifest as increased serum and tissue-specific indices of kidney and liver failure, along with depressed heart rate and blood pressure. While administration of mt-targeted Ogg1 to control animals was innocuous, the active fusion protein, but not a DNA repair-deficient mutant, prevented bacteria-induced increases in lung tissue oxidative mtDNA damage, failed to alter mtDNA copy number, and attenuated lung endothelial barrier degradation. These changes were associated with suppression of liver, kidney, and cardiovascular dysfunction and with decreased 24 h mortality. Collectively, the present findings indicate that oxidative mtDNA damage to lung tissue initiates PA103-induced ALI and MOSF in rats.


Asunto(s)
Lesión Pulmonar Aguda/genética , Daño del ADN/genética , ADN Mitocondrial/genética , Insuficiencia Multiorgánica/genética , Lesión Pulmonar Aguda/microbiología , Animales , ADN Glicosilasas/genética , Masculino , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Pseudomonas aeruginosa/patogenicidad , Ratas , Ratas Sprague-Dawley , Tráquea/microbiología
19.
DNA Repair (Amst) ; 4(4): 511-8, 2005 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-15725631

RESUMEN

The protein transduction domain (PTD) from the HIV-1 TAT protein has been widely utilized to deliver biologically active macromolecules, including full-length proteins, into a variety of cell types in vitro and in vivo. Without additional targeting signals, the intracellular localization of the proteins delivered in this fashion appears to be cytoplasmic, nuclear or, as recently reported, endosomal. In this study, we show that the presence of the mitochondrial targeting signal (MTS) from hMnSOD on the N-terminus of TAT-fusion proteins directs them into mitochondria of breast cancer cells. We generated and purified fusion proteins containing GFP (MTS-GFP-TAT) or Exonuclease III (MTS-ExoIII-TAT) from Escherichia coli. The results of Western blots of subcellular fractions and fluorescent microscopic analyses revealed efficient protein transduction and mitochondrial localization of the fusion proteins. Specific exonuclease activity was found in the mitochondrial extracts isolated from MTS-ExoIII-TAT transduced cells. This increased exonuclease activity reduced the repair of mtDNA damage following oxidative stress. This diminished mtDNA repair led to a decrease in survival of breast cancer cells. Thus, the present study demonstrates the applicability of this new approach for intramitochondrial targeting of TAT-fusion proteins capable of modulating mitochondrial function and cell survival.


Asunto(s)
Productos del Gen tat/metabolismo , Transducción Genética , Neoplasias de la Mama , Línea Celular Tumoral , Exodesoxirribonucleasas/genética , Femenino , Humanos , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo
20.
Free Radic Biol Med ; 40(5): 754-62, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16520228

RESUMEN

An increasing body of evidence suggests that nitric oxide (NO) can be cytotoxic and induce apoptosis. NO can also be genotoxic and cause DNA damage and mutations. It has been shown that NO damages mitochondrial DNA (mtDNA) to a greater extent than nuclear DNA. Previously, we reported that conditional targeting of the DNA repair protein hOGG1 into mitochondria using a mitochondria targeting sequence (MTS) augmented mtDNA repair of oxidative damage and enhanced cellular survival. To determine whether enhanced repair resulting from augmented expression of hOGG1 could also protect against the deleterious effects of NO, we used HeLa TetOff/MTS-OGG1-transfected cells to conditionally express hOGG1 in mitochondria. The effects of additional hOGG1 expression on repair of NO-induced mtDNA damage and cell survival were evaluated. These cells, along with vector transfectants, in either the presence or absence of doxycycline (Dox), were exposed to NO produced by the rapid decomposition of 1-propanamine, 3-(2-hydroxy-2-nitroso-1-propylhydrazino) (PAPA NONOate). Functional studies revealed that cells expressing recombinant hOGG1 were more proficient at repairing NO-induced mtDNA damage, which led to increased cellular survival following NO exposure. Moreover, the results described here show that conditional expression of hOGG1 in mitochondria decreases NO-induced inhibition of ATP production and protects cells from NO-induced apoptosis.


Asunto(s)
Daño del ADN , ADN Glicosilasas/metabolismo , ADN Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Óxido Nítrico/toxicidad , Apoptosis/genética , Citocromos c/metabolismo , ADN Glicosilasas/genética , Reparación del ADN , Doxiciclina/farmacología , Células HeLa , Humanos , Hidrazinas/farmacología , Mitocondrias/enzimología , Mitocondrias/genética , Óxido Nítrico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA