Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Aging Cell ; 19(4): e13142, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32233024

RESUMEN

Pharmacologically active compounds with preferential cytotoxic activity for senescent cells, known as senolytics, can ameliorate or even revert pathological manifestations of senescence in numerous preclinical mouse disease models, including cancer models. However, translation of senolytic therapies to human disease is hampered by their suboptimal specificity for senescent cells and important toxicities that narrow their therapeutic windows. We have previously shown that the high levels of senescence-associated lysosomal ß-galactosidase (SA-ß-gal) found within senescent cells can be exploited to specifically release tracers and cytotoxic cargoes from galactose-encapsulated nanoparticles within these cells. Here, we show that galacto-conjugation of the BCL-2 family inhibitor Navitoclax results in a potent senolytic prodrug (Nav-Gal), that can be preferentially activated by SA-ß-gal activity in a wide range of cell types. Nav-Gal selectively induces senescent cell apoptosis and has a higher senolytic index than Navitoclax (through reduced activation in nonsenescent cells). Nav-Gal enhances the cytotoxicity of standard senescence-inducing chemotherapy (cisplatin) in human A549 lung cancer cells. Concomitant treatment with cisplatin and Nav-Gal in vivo results in the eradication of senescent lung cancer cells and significantly reduces tumour growth. Importantly, galacto-conjugation reduces Navitoclax-induced platelet apoptosis in human and murine blood samples treated ex vivo, and thrombocytopenia at therapeutically effective concentrations in murine lung cancer models. Taken together, we provide a potentially versatile strategy for generating effective senolytic prodrugs with reduced toxicities.


Asunto(s)
Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Plaquetas/efectos de los fármacos , Galactosa/farmacología , Profármacos/farmacología , Sulfonamidas/farmacología , Compuestos de Anilina/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Galactosa/química , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Profármacos/síntesis química , Profármacos/química , Sulfonamidas/química , Células Tumorales Cultivadas
2.
PLoS One ; 13(1): e0190330, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29300773

RESUMEN

The purpose of this study is to determine the effects of low-dose radiation on fibroblast cells irradiated by spectrally and dosimetrically well-characterized soft x-rays. To achieve this, a new cell culture x-ray irradiation system was designed. This system generates characteristic fluorescent x-rays to irradiate the cell culture with x-rays of well-defined energies and doses. 3T3 fibroblast cells were cultured in cups with Mylar® surfaces and were irradiated for one hour with characteristic iron (Fe) K x-ray radiation at a dose rate of approximately 550 µGy/hr. Cell proliferation, total protein analysis, flow cytometry, and cell staining were performed on fibroblast cells to determine the various effects caused by the radiation. Irradiated cells demonstrated increased proliferation and protein production compared to control samples. Flow cytometry revealed that a higher percentage of irradiated cells were in the G0/G1 phase of the cell cycle compared to control counterparts, which is consistent with other low-dose studies. Cell staining results suggest that irradiated cells maintained normal cell functions after radiation exposure, as there were no qualitative differences between the images of the control and irradiated samples. The result of this study suggest that low-dose soft x-ray radiation might cause an initial pause, followed by a significant increase, in proliferation. An initial "pause" in cell proliferation could be a protective mechanism of the cells to minimize DNA damage caused by radiation exposure. The new cell irradiation system developed here allows for unprecedented control over the properties of the x-rays given to the cell cultures. This will allow for further studies on various cell types with known spectral distribution and carefully measured doses of radiation, which may help to elucidate the mechanisms behind varied cell responses to low-dose x-rays reported in the literature.


Asunto(s)
Fibroblastos/efectos de la radiación , Animales , Relación Dosis-Respuesta a Droga , Fibroblastos/citología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Fase G1 , Ratones , Células 3T3 NIH , Proteínas/metabolismo , Fase de Descanso del Ciclo Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA