Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 126: 103877, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37385516

RESUMEN

The ongoing opioid addiction crisis necessitates the identification of novel risk factors to improve prevention and treatment of opioid use disorder. Parental opioid exposure has recently emerged as a potential regulator of offspring vulnerability to opioid misuse, in addition to heritable genetic liability. An understudied aspect of this "missing heritability" is the developmental presentation of these cross-generational phenotypes. This is an especially relevant question in the context of inherited addiction-related phenotypes, given the prominent role of developmental processes in the etiology of psychiatric disorders. Paternal morphine self-administration was previously shown to alter the sensitivity to the reinforcing and antinociceptive properties of opioids in the next generation. Here, phenotyping was expanded to include the adolescent period, with a focus on endophenotypes related to opioid use disorders and pain. Paternal morphine exposure did not alter heroin or cocaine self-administration in male and female juvenile progeny. Further, baseline sensory reflexes related to pain were unaltered in morphine-sired adolescent rats of either sex. However, morphine-sired adolescent males exhibited a reduction in social play behavior. Our findings suggest that, in morphine-sired male offspring, paternal opioid exposure does not affect opioid intake during adolescence, suggesting that this phenotype does not emerge until later in life. Altered social behaviors in male morphine-sired adolescents indicate that the changes in drug-taking behavior in adults sired by morphine-exposed sires may be due to more complex factors not yet fully assessed.


Asunto(s)
Cocaína , Morfina , Ratas , Masculino , Femenino , Animales , Humanos , Morfina/efectos adversos , Analgésicos Opioides/efectos adversos , Exposición Paterna/efectos adversos , Dolor/inducido químicamente
2.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33593913

RESUMEN

Experiencing some early life adversity can have an "inoculating" effect that promotes resilience in adulthood. However, the mechanisms underlying stress inoculation are unknown, and animal models are lacking. Here we used the limited bedding and nesting (LBN) model of adversity to evaluate stress inoculation of addiction-related phenotypes. In LBN, pups from postnatal days 2 to 9 and their dams were exposed to a low-resource environment. In adulthood, they were tested for addiction-like phenotypes and compared to rats raised in standard housing conditions. High levels of impulsivity are associated with substance abuse, but in males, LBN reduced impulsive choice compared to controls. LBN males also self-administered less morphine and had a lower breakpoint on a progressive ratio reinforcement schedule than controls. These effects of LBN on addiction-related behaviors were not found in females. Because the nucleus accumbens (NAc) mediates these behaviors, we tested whether LBN altered NAc physiology in drug-naïve and morphine-exposed rats. LBN reduced the frequency of spontaneous excitatory postsynaptic currents in males, but a similar effect was not observed in females. Only in males did LBN prevent a morphine-induced increase in the AMPA/NMDA ratio. RNA sequencing was performed to delineate the molecular signature in the NAc associated with LBN-derived phenotypes. LBN produced sex-specific changes in transcription, including in genes related to glutamate transmission. Collectively, these studies reveal that LBN causes a male-specific stress inoculation effect against addiction-related phenotypes. Identifying factors that promote resilience to addiction may reveal novel treatment options for patients.


Asunto(s)
Conducta Animal , Núcleo Accumbens/fisiopatología , Trastornos Relacionados con Opioides/prevención & control , Resiliencia Psicológica , Estrés Psicológico , Transcriptoma , Animales , Animales Recién Nacidos , Femenino , Regulación de la Expresión Génica , Masculino , Núcleo Accumbens/efectos de los fármacos , Trastornos Relacionados con Opioides/genética , Trastornos Relacionados con Opioides/metabolismo , Fenotipo , Ratas , Ratas Long-Evans , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Factores Sexuales
3.
J Neurosci ; 42(14): 2905-2916, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35232758

RESUMEN

Paternal environmental perturbations can influence the physiology and behavior of offspring. For example, our previous work showed reduced cocaine reinforcement in male, but not female, progeny of rat sires that self-administered cocaine. The information transfer from sire to progeny may occur through epigenetic marks in sperm, encompassing alterations in small noncoding RNAs, including microRNAs (miRNAs) and/or DNA methylation. Here, no reliable changes in miRNAs in the sperm of cocaine- relative to saline-experienced sires were identified. In contrast, 272 differentially methylated regions were observed in sperm between these groups. Two hypomethylated promoter regions in the sperm of cocaine-experienced rats were upstream of cyclin-dependent kinase inhibitor 1a (Cdkn1a). Cdkn1a mRNA also was selectively increased in the NAc of cocaine-sired male (but not female) offspring. Cocaine self-administration also enhanced Cdkn1a expression in the accumbens of cocaine-sired rats. These results suggest that changes in Cdkn1a may play a role in the reduced cocaine reinforcing efficacy observed in cocaine-sired male rats. Introducing a 90 d delay between sire self-administration and breeding reversed both cocaine resistance and the increase in accumbens Cdkn1a mRNA in male offspring, indicating that cocaine-induced epigenetic modifications are eliminated with sperm turnover. Collectively, our results indicate that cocaine self-administration produces hypomethylation of Cdkn1a in sperm and a selective increase in the expression of this gene in the NAc of male offspring, which is associated with blunted cocaine reinforcement.SIGNIFICANCE STATEMENT The relatively new field of transgenerational epigenetics explores the effects of environmental perturbations on offspring behavior and physiology. Our prior work in rats indicated that male, but not female, progeny of sires that self-administered cocaine displayed reduced cocaine reinforcement. The information transfer from sire to progeny may occur through heritable epigenetic marks in sperm, including DNA methylation. The present findings revealed two hypomethylated promoter regions upstream of the Cdkn1a gene in sire sperm. Remarkably, Cdkn1a expression was selectively decreased in offspring NAc, a brain region that regulates cocaine reinforcement.


Asunto(s)
Cocaína , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Metilación de ADN , Epigénesis Genética , Espermatozoides , Animales , Cocaína/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/farmacología , Metilación de ADN/efectos de los fármacos , Masculino , MicroARNs/metabolismo , Núcleo Accumbens , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Espermatozoides/metabolismo
4.
Mol Psychiatry ; 27(9): 3864-3874, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35595980

RESUMEN

Nicotine intake, whether through tobacco smoking or e-cigarettes, remains a global health concern. An emerging preclinical literature indicates that parental nicotine exposure produces behavioral, physiological, and molecular changes in subsequent generations. However, the heritable effects of voluntary parental nicotine taking are unknown. Here, we show increased acquisition of nicotine taking in male and female offspring of sires that self-administered nicotine. In contrast, self-administration of sucrose and cocaine were unaltered in male and female offspring suggesting that the intergenerational effects of paternal nicotine taking may be reinforcer specific. Further characterization revealed memory deficits and increased anxiety-like behaviors in drug-naive male, but not female, offspring of nicotine-experienced sires. Using an unbiased, genome-wide approach, we discovered that these phenotypes were associated with decreased expression of Satb2, a transcription factor known to play important roles in synaptic plasticity and memory formation, in the hippocampus of nicotine-sired male offspring. This effect was sex-specific as no changes in Satb2 expression were found in nicotine-sired female offspring. Finally, increasing Satb2 levels in the hippocampus prevented the escalation of nicotine intake and rescued the memory deficits associated with paternal nicotine taking in male offspring. Collectively, these findings indicate that paternal nicotine taking produces heritable sex-specific molecular changes that promote addiction-like phenotypes and memory impairments in male offspring.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz , Nicotina , Exposición Paterna , Factores de Transcripción , Femenino , Masculino , Hipocampo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Trastornos de la Memoria , Nicotina/efectos adversos , Exposición Paterna/efectos adversos , Fenotipo , Factores de Transcripción/genética , Animales
5.
Eur J Neurosci ; 55(7): 1742-1755, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35320877

RESUMEN

A powerful motivation to seek opioids remains after drug cessation and intensifies during extended periods of abstinence. Unfortunately, biomarkers associated with continued drug seeking have not been described. Moreover, previous studies have focused on the effects of early abstinence with little exploration into the long-term drug-induced mechanisms that occur after extended abstinence. Here we demonstrated that 30 days (D) of forced abstinence results in a time-dependent increase in morphine seeking in a rat model of morphine self-administration (SA). We measured expression of known drug-responsive microRNAs (miRNAs) in the nucleus accumbens, an area critical for reward-related plasticity, during early or late abstinence in animals that underwent either a cue-induced relapse test or no relapse test. miRNAs are small noncoding RNAs that represent suitable biomarker candidates due to their long-lasting nature. mir-32-5p levels during early abstinence negatively correlated with active lever pressing in both cue-exposed and cue-naïve animals. mir-1298-5p positively correlated with drug SA history after a relapse test during late abstinence. When animals underwent acute abstinence with no relapse test, mir-1298-5p correlated with drug infusions and active lever pressing during SA. In late abstinence with no relapse test, mir-137-3p negatively correlated with drug infusions. Regulation of mir-32-5p target genes and significant correlation of target gene mRNA with mir-32-5p was observed after abstinence. These results indicate that lasting regulation of miRNA expression is associated with drug intake following morphine SA. In addition, we conclude that the miRNA profile undergoes regulation from early to late abstinence and miRNA expression may indicate past drug history.


Asunto(s)
MicroARNs , Núcleo Accumbens , Animales , Señales (Psicología) , Comportamiento de Búsqueda de Drogas , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Morfina/farmacología , Ratas , Recurrencia , Autoadministración
6.
J Neurosci ; 39(27): 5247-5254, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31043484

RESUMEN

Although numerous epigenetic modifications have been associated with addiction, little work has explored the turnover of histone variants. Uniquely, the H3.3 variant incorporates stably and preferentially into chromatin independently of DNA replication at active sites of transcription and transcription factor binding. Thus, genomic regions associated with H3.3-containing nucleosomes are particularly likely to be involved in plasticity, such as following repeated cocaine exposure. A recently developed mouse line expressing a neuron-specific hemagglutinin (HA)-tagged H3.3 protein was used to track transcriptionally active sites cumulatively across 19 d of cocaine self-administration. RNA-seq and H3.3-HA ChIP-seq analyses were performed on NAcc tissue collected following cocaine or food self-administration in male mice. RNA sequencing revealed five genes upregulated in cocaine relative to food self-administering mice: Fosb, Npas4, Vgf, Nptx2, and Pmepa1, which reflect known and novel cocaine plasticity-associated genes. Subsequent ChIP-seq analysis confirmed increased H3.3 aggregation at four of these five loci, thus validating H3.3 insertion as a marker of enhanced cocaine-induced transcription. Further motif recognition analysis of the ChIP-seq data showed that cocaine-associated differential H3.3 accumulation correlated with the presence of several transcription factor binding motifs, including RBPJ1, EGR1, and SOX4, suggesting that these are potentially important regulators of molecular cascades associated with cocaine-induced neuronal plasticity. Additional ontological analysis revealed differential H3.3 accumulation mainly near genes involved in neuronal differentiation and dendrite formation. These results establish the H3.3-HA transgenic mouse line as a compelling molecular barcoding tool to identify the cumulative effects of long-term environmental perturbations, such as exposure to drugs of abuse.SIGNIFICANCE STATEMENT Histone H3.3 is a core histone variant that is stably incorporated at active sites of transcription. We used a tagged version of H3.3 expressed exclusively in neurons to delineate active transcription sites following extended cocaine self-administration in mice. This approach revealed the cumulative list of genes expressed in response to cocaine taking over the course of several weeks. We combined this technique with RNA sequencing of tissue collected from the same animals 24 h after the last cocaine exposure. Comparing these datasets provided a full picture of genes that respond to chronic cocaine exposure in NAcc neurons. These studies revealed novel transcription factors that are likely involved in cocaine-induced plasticity and addiction-like behaviors.


Asunto(s)
Trastornos Relacionados con Cocaína/genética , Cocaína/administración & dosificación , Comportamiento de Búsqueda de Drogas/fisiología , Epigénesis Genética , Histonas/genética , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Animales , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal
7.
Neurobiol Learn Mem ; 169: 107168, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31962134

RESUMEN

Normal aging is accompanied by cognitive and memory impairments that negatively impact quality of life for the growing elderly population. Hippocampal function is most vulnerable to the deleterious effects of aging, and deficits in hippocampus-dependent memories are common amongst aged individuals. Moreover, signaling networks such as the cAMP/PKA/CREB pathway, which are critical for memory consolidation, are dampened in healthy aged subjects. Phosphodiesterase (PDE) enzymes that break down cAMP are also affected by aging, and increased break down of cAMP by PDEs may contribute to reduced activity of the cAMP/PKA/CREB signaling network in the brain of aged individuals. Here, we report that the PDE4 inhibitor rolipram administered during consolidation of hippocampus-dependent object location memory improves aged-related spatial memory deficits in aged mice.


Asunto(s)
Envejecimiento/fisiología , Envejecimiento/psicología , Consolidación de la Memoria/fisiología , Memoria a Largo Plazo/fisiología , Inhibidores de Fosfodiesterasa 4/administración & dosificación , Rolipram/administración & dosificación , Animales , Masculino , Consolidación de la Memoria/efectos de los fármacos , Memoria a Largo Plazo/efectos de los fármacos , Ratones Endogámicos C57BL
8.
Eur J Neurosci ; 49(9): 1115-1126, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30565761

RESUMEN

Our previous work indicated that male, but not female, offspring of cocaine-experienced sires display blunted cocaine self-administration. We extended this line of investigation to examine behavioral sensitization, a commonly used model of cocaine-induced behavioral and neuronal plasticity. Results indicated that male, but not female, offspring of cocaine-taking sires showed deficits in the ability of repeated systemic cocaine injections to induce augmented locomotor activity. The reduced cocaine sensitization phenotype in male progeny was associated with changes in histone post-translational modifications, epigenetic processes that regulate gene expression by controlling the accessibility of genes to transcriptional machinery, in the nucleus accumbens of first-generation male progeny. Thus, five histone post-translational modifications were significantly altered in the male progeny of cocaine-exposed sires. In contrast, self-administration of nicotine was unaltered in male and female offspring suggesting that the intergenerational effects of paternal cocaine taking may be drug-specific. Interestingly, the reduced sensitivity to cocaine previously observed in the male offspring of cocaine-taking sires dissipated in the grand-offspring. Both male and female grand-progeny of cocaine-exposed sires showed unaltered cocaine-induced behavioral sensitization and cocaine self-administration. Taken together, these findings indicate that paternal cocaine taking produces changes in multiple cocaine addiction-related behaviors in male progeny, which do not persist beyond the first generation of offspring. Moreover, the altered sensitivity to cocaine in first-generation male progeny of cocaine-sired male offspring was associated with epigenetic modifications in the nucleus accumbens, a nucleus that plays a critical role in cocaine-associated behavioral plasticity.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cocaína/toxicidad , Inhibidores de Captación de Dopamina/toxicidad , Plasticidad Neuronal/efectos de los fármacos , Exposición Paterna/efectos adversos , Caracteres Sexuales , Animales , Femenino , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Ratas , Ratas Sprague-Dawley
9.
Nucleic Acids Res ; 43(16): 7664-74, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26202970

RESUMEN

The sequencing of the full transcriptome (RNA-seq) has become the preferred choice for the measurement of genome-wide gene expression. Despite its widespread use, challenges remain in RNA-seq data analysis. One often-overlooked aspect is normalization. Despite the fact that a variety of factors or 'batch effects' can contribute unwanted variation to the data, commonly used RNA-seq normalization methods only correct for sequencing depth. The study of gene expression is particularly problematic when it is influenced simultaneously by a variety of biological factors in addition to the one of interest. Using examples from experimental neuroscience, we show that batch effects can dominate the signal of interest; and that the choice of normalization method affects the power and reproducibility of the results. While commonly used global normalization methods are not able to adequately normalize the data, more recently developed RNA-seq normalization can. We focus on one particular method, RUVSeq and show that it is able to increase power and biological insight of the results. Finally, we provide a tutorial outlining the implementation of RUVSeq normalization that is applicable to a broad range of studies as well as meta-analysis of publicly available data.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Animales , Variación Genética , Masculino , Ratones Endogámicos C57BL , Neurociencias/métodos , Reproducibilidad de los Resultados
10.
Neurobiol Learn Mem ; 134 Pt B: 221-35, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27451143

RESUMEN

The process of memory consolidation requires transcription and translation to form long-term memories. Significant effort has been dedicated to understanding changes in hippocampal gene expression after contextual fear conditioning. However, alternative splicing by differential transcript regulation during this time period has received less attention. Here, we use RNA-seq to determine exon-level changes in expression after contextual fear conditioning and retrieval. Our work reveals that a short variant of Homer1, Ania-3, is regulated by contextual fear conditioning. The ribosome biogenesis regulator Las1l, small nucleolar RNA Snord14e, and the RNA-binding protein Rbm3 also change specific transcript usage after fear conditioning. The changes in Ania-3 and Las1l are specific to either the new context or the context-shock association, while the changes in Rbm3 occur after context or shock only. Our analysis revealed novel transcript regulation of previously undetected changes after learning, revealing the importance of high throughput sequencing approaches in the study of gene expression changes after learning.


Asunto(s)
Empalme Alternativo/genética , Conducta Animal/fisiología , Condicionamiento Clásico/fisiología , Expresión Génica/genética , Hipocampo/metabolismo , Proteínas de Andamiaje Homer/genética , Animales , Miedo , Masculino , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas , Análisis de Secuencia de ARN
11.
Addict Biol ; 21(4): 802-810, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-25923597

RESUMEN

We previously showed that paternal cocaine exposure reduced the reinforcing efficacy of cocaine in male offspring. Here, we sought to determine whether paternal cocaine experience could also influence anxiety levels in offspring. Male rats were allowed to self-administer cocaine (controls received saline passively) for 60 days and then were bred with naïve females. Measures of anxiety and cocaine-induced anxiogenic effects were assessed in the adult offspring. Cocaine-sired male offspring exhibited increased anxiety-like behaviors, as measured using the novelty-induced hypophagia and defensive burying tasks, relative to saline-sired males. In contrast, sire cocaine experience had no effect on anxiety-like behaviors in female offspring. When challenged with an anxiogenic (but not anorectic) dose of cocaine (2.5 mg/kg, i.p.), anxiety-like behavior was enhanced in all animals to an equal degree regardless of sire drug experience. Since anxiety and depression are often co-morbid, we also assessed measures of depressive-like behavior. Sire cocaine experience had no effect on depression-like behaviors, as measured by the forced swim task, among male offspring. In a separate group of naïve littermates, select neuronal correlates of anxiety were measured. Male offspring of cocaine-experienced sires showed increased mRNA and protein expression of corticotropin-releasing factor receptor 2 in the hippocampus. Together, these results indicate that cocaine-experienced sires produce male progeny that have increased baseline anxiety, which is unaltered by subsequent cocaine exposure.


Asunto(s)
Ansiedad/inducido químicamente , Conducta Animal/efectos de los fármacos , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Exposición Paterna/estadística & datos numéricos , Animales , Cocaína/administración & dosificación , Modelos Animales de Enfermedad , Inhibidores de Captación de Dopamina/administración & dosificación , Padre , Femenino , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley , Factores Sexuales
12.
BMC Genomics ; 16 Suppl 5: S5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26040834

RESUMEN

BACKGROUND: A fundamental question in neuroscience is how memories are stored and retrieved in the brain. Long-term memory formation requires transcription, translation and epigenetic processes that control gene expression. Thus, characterizing genome-wide the transcriptional changes that occur after memory acquisition and retrieval is of broad interest and importance. Genome-wide technologies are commonly used to interrogate transcriptional changes in discovery-based approaches. Their ability to increase scientific insight beyond traditional candidate gene approaches, however, is usually hindered by batch effects and other sources of unwanted variation, which are particularly hard to control in the study of brain and behavior. RESULTS: We examined genome-wide gene expression after contextual conditioning in the mouse hippocampus, a brain region essential for learning and memory, at all the time-points in which inhibiting transcription has been shown to impair memory formation. We show that most of the variance in gene expression is not due to conditioning and that by removing unwanted variance through additional normalization we are able provide novel biological insights. In particular, we show that genes downregulated by memory acquisition and retrieval impact different functions: chromatin assembly and RNA processing, respectively. Levels of histone 2A variant H2AB are reduced only following acquisition, a finding we confirmed using quantitative proteomics. On the other hand, splicing factor Rbfox1 and NMDA receptor-dependent microRNA miR-219 are only downregulated after retrieval, accompanied by an increase in protein levels of miR-219 target CAMKIIγ. CONCLUSIONS: We provide a thorough characterization of coding and non-coding gene expression during long-term memory formation. We demonstrate that unwanted variance dominates the signal in transcriptional studies of learning and memory and introduce the removal of unwanted variance through normalization as a necessary step for the analysis of genome-wide transcriptional studies in the context of brain and behavior. We show for the first time that histone variants are downregulated after memory acquisition, and splicing factors and microRNAs after memory retrieval. Our results provide mechanistic insights into the molecular basis of cognition by highlighting the differential involvement of epigenetic mechanisms, such as histone variants and post-transcriptional RNA regulation, after acquisition and retrieval of memory.


Asunto(s)
Epigénesis Genética/fisiología , Hipocampo/fisiología , Histonas/genética , Memoria a Largo Plazo/fisiología , MicroARNs/genética , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Condicionamiento Psicológico/fisiología , Expresión Génica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Masculino , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , MicroARNs/biosíntesis , Factores de Empalme de ARN , Proteínas de Unión al ARN/genética , Transcripción Genética/genética
13.
Neurobiol Stress ; 29: 100607, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38304302

RESUMEN

Astrocyte morphology affects function, including the regulation of glutamatergic signaling. This morphology changes dynamically in response to the environment. However, how early life manipulations alter adult cortical astrocyte morphology is underexplored. Our lab uses brief postnatal resource scarcity, the limited bedding and nesting (LBN) manipulation, in rats. We previously found that LBN augments maternal behaviors and promotes later resilience to adult addiction-related behaviors, reducing impulsivity, risky decision-making, and morphine self-administration. These behaviors rely on glutamatergic transmission in the medial orbitofrontal (mOFC) and medial prefrontal (mPFC) cortex. Here we tested whether LBN changed astrocyte morphology in the mOFC and mPFC of adult rats using a novel viral approach that, unlike traditional markers, fully labels astrocytes. Prior exposure to LBN causes an increase in the surface area and volume of astrocytes in the mOFC and mPFC of adult males and females relative to control-raised rats. We next used bulk RNA sequencing of OFC tissue to assess transcriptional changes that could increase astrocyte size in LBN rats. LBN caused mainly sex-specific changes in differentially expressed genes. Pathway analysis revealed that OFC glutamatergic signaling is altered by LBN in males and females, but the gene changes in that pathway differed across sex. This may represent a convergent sex difference where glutamatergic signaling, which affects astrocyte morphology, is altered by LBN via sex-specific mechanisms. Collectively, these studies highlight that astrocytes may be an important cell type that mediates the effect of early resource scarcity on adult brain function.

14.
Biol Sex Differ ; 14(1): 52, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596655

RESUMEN

BACKGROUND: Glutamate signaling within the nucleus accumbens underlies motivated behavior and is involved in psychiatric disease. Although behavioral sex differences in these processes are well-established, the neural mechanisms driving these differences are largely unexplored. In these studies, we examine potential sex differences in synaptic plasticity and excitatory transmission within the nucleus accumbens core. Further understanding of baseline sex differences in reward circuitry will shed light on potential mechanisms driving behavioral differences in motivated behavior and psychiatric disease. METHODS: Behaviorally naïve adult male and female Long-Evans rats, C57Bl/6J mice, and constitutive PKMζ knockout mice were killed and tissue containing the nucleus accumbens core was collected for ex vivo slice electrophysiology experiments. Electrophysiology recordings examined baseline sex differences in synaptic plasticity and transmission within this region and the potential role of PKMζ in long-term depression. RESULTS: Within the nucleus accumbens core, both female mice and rats exhibit higher AMPA/NMDA ratios compared to male animals. Further, female mice have a larger readily releasable pool of glutamate and lower release probability compared to male mice. No significant sex differences were detected in spontaneous excitatory postsynaptic current amplitude or frequency. Finally, the threshold for induction of long-term depression was lower for male animals than females, an effect that appears to be mediated, in part, by PKMζ. CONCLUSIONS: We conclude that there are baseline sex differences in synaptic plasticity and excitatory transmission in the nucleus accumbens core. Our data suggest there are sex differences at multiple levels in this region that should be considered in the development of pharmacotherapies to treat psychiatric illnesses such as depression and substance use disorder.


Understanding normal neural signaling within the nucleus accumbens, a key brain region involved in psychiatric disease including substance use disorder and depression, could provide insight into treatment options for these disorders. Although we know the behaviors regulated by the nucleus accumbens can differ between males and females, we do not understand the underlying differences in brain processing that could contribute to these behavioral differences. Further, even in cases when these behaviors are not different, the underlying brain signaling may exhibit sex-specific mechanisms. The current studies examined excitatory signaling with the nucleus accumbens in both rats and mice at the level of both individual cells and circuits. We found that female rodents (rats and mice) exhibit higher levels of excitatory signaling within the nucleus accumbens than male rodents. Further, procedures that can dampen neural transmission in males are not sufficient to do so in females, suggesting that excitatory signaling in the nucleus accumbens of females is less plastic. Finally, our last set of studies utilized mice missing the protein, PKMζ, and demonstrated that this reversed some of the sex differences seen in normal mice, pointing to a critical role for this protein in maintaining these differences. Our data suggest there are sex differences at multiple levels in this region that should be considered in the development of pharmacotherapies to treat psychiatric illnesses such as depression and substance use disorder.


Asunto(s)
Ácido Glutámico , Núcleo Accumbens , Femenino , Masculino , Ratones , Ratas , Animales , Ratas Long-Evans , Caracteres Sexuales , Potenciales Postsinápticos Excitadores , Ratones Endogámicos C57BL , Ratones Noqueados
15.
bioRxiv ; 2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37425737

RESUMEN

Astrocyte morphology affects function, including the regulation of glutamatergic signaling. This morphology changes dynamically in response to the environment. However, how early life manipulations alter adult cortical astrocyte morphology is underexplored. Our lab uses brief postnatal resource scarcity, the limited bedding and nesting (LBN) manipulation, in rats. We previously found that LBN promotes later resilience to adult addiction-related behaviors, reducing impulsivity, risky decision-making, and morphine self-administration. These behaviors rely on glutamatergic transmission in the medial orbitofrontal (mOFC) and medial prefrontal (mPFC) cortex. Here we tested whether LBN changed astrocyte morphology in the mOFC and mPFC of adult rats using a novel viral approach that, unlike traditional markers, fully labels astrocytes. Prior exposure to LBN causes an increase in the surface area and volume of astrocytes in the mOFC and mPFC of adult males and females relative to control-raised rats. We next used bulk RNA sequencing of OFC tissue to assess transcriptional changes that could increase astrocyte size in LBN rats. LBN caused mainly sex-specific changes in differentially expressed genes. However, Park7, which encodes for the protein DJ-1 that alters astrocyte morphology, was increased by LBN across sex. Pathway analysis revealed that OFC glutamatergic signaling is altered by LBN in males and females, but the gene changes in that pathway differed across sex. This may represent a convergent sex difference where glutamatergic signaling, which affects astrocyte morphology, is altered by LBN via sex-specific mechanisms. Collectively, these studies highlight that astrocytes may be an important cell type that mediates the effect of early resource scarcity on adult brain function.

16.
bioRxiv ; 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36711571

RESUMEN

Background: A growing body of preclinical studies report that preconceptional experiences can have a profound and long-lasting impact on adult offspring behavior and physiology. However, less is known about paternal drug exposure and its effects on reward sensitivity in the next generation. Methods: Adult male rats self-administered morphine for 65 days; controls received saline. Sires were bred to drug-naïve dams to produce first-generation (F1) offspring. Morphine, cocaine, and nicotine self-administration were measured in adult F1 progeny. Molecular correlates of addiction-like behaviors were measured in reward-related brain regions of drug naïve F1 offspring. Results: Male, but not female offspring produced by morphine-exposed sires exhibited dose-dependent increased morphine self-administration and increased motivation to earn morphine infusions under a progressive ratio schedule of reinforcement. This phenotype was drug-specific as self-administration of cocaine, nicotine, and sucrose were not altered by paternal morphine history. The male offspring of morphine-exposed sires also had increased expression of mu-opioid receptors in the ventral tegmental area but not in the nucleus accumbens. Conclusions: Paternal morphine exposure increased morphine addiction-like behavioral vulnerability in male but not female progeny. This phenotype is likely driven by long-lasting neural adaptations within the reward neural brain pathways.

17.
Psychopharmacology (Berl) ; 239(12): 3929-3937, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36301314

RESUMEN

RATIONALE: Early life adversity impacts reward-related behaviors, including reward seeking for drugs of abuse. However, the effects of early stress on natural rewards, such as food and social rewards, which have strong implications for symptoms of psychiatric conditions such as major depressive disorder (MDD), are understudied. To fill this gap, we used the limited bedding and nesting (LBN) procedure to assess the impact of early resource scarcity on motivational drive for both food and social rewards in rats. METHODS: Male and female Long Evans rats were reared in either an LBN environment, with limited nesting materials and no enrichment, from their postnatal day 2-9 or control environment with ample nesting materials and enrichment. As adults, they were tested for reward-seeking behavior on progressive ratio operant tasks: food reward (sucrose) or social reward (access to a same-sex/age conspecific). RESULTS: We observed sex differences in the impact of LBN on motivation for natural rewards. In males, LBN increased motivation for both a sucrose and social reward. In females, LBN reduced motivation for sucrose but had no effect on social reward. CONCLUSIONS: These results suggest that the effects of LBN on motivation for natural rewards are both sex- and reinforcer-dependent, with males and females showing differential motivation for food and social rewards following early scarcity. Our previous data revealed an LBN-driven reduction in motivation for morphine in males and no effect in females, highlighting the reinforcer-dependent impact of early resource scarcity on motivated behavior more widely.


Asunto(s)
Trastorno Depresivo Mayor , Motivación , Femenino , Masculino , Ratas , Animales , Ratas Long-Evans , Recompensa , Sacarosa/farmacología
18.
eNeuro ; 9(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35241453

RESUMEN

Incubation of craving refers to the intensification of drug-seeking behavior in response to reward-paired cues over the course of abstinence. In rodents, craving and drug-seeking behaviors have been measured by an increase in lever pressing in the absence of reinforcer availability in response to cue presentations. However, craving in rodents is difficult to define and little is known about the behavioral signatures that accompany increased drug-seeking behavior measured by lever pressing. The affective components of relapse are also important, but understudied in rodents. Hormonal fluctuations influence craving for psychostimulants, but little is known about the impact of the estrous cycle on opioid-seeking behavior. This study sought to delineate the behavioral and affective signatures associated with craving, and to examine the influence of the female estrous cycle on craving. Male and female rats underwent 10 d of intravenous opioid self-administration. Separate cohorts of control rats self-administered oral sucrose, a natural nondrug reward. Cue-induced seeking tests were conducted after 1 or 30d of forced abstinence. These sessions were recorded and scored for overall locomotion, instances of sniffing, grooming, or hyperactivity. Ultrasonic vocalizations (USVs) were also recorded to determine affective profiles that accompany opioid seeking. Although active lever presses and overall locomotion increased unanimously over extended abstinence from heroin and sucrose, a sex- and reinforcer-specific behavioral and affective signature of craving emerged. Furthermore, although the female estrous cycle did not affect taking or seeking, it appears to influence more granular behaviors.


Asunto(s)
Analgésicos Opioides , Ansia , Analgésicos Opioides/farmacología , Animales , Señales (Psicología) , Comportamiento de Búsqueda de Drogas , Femenino , Masculino , Ratas , Autoadministración , Sacarosa
19.
Neuropsychopharmacology ; 47(6): 1231-1239, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35102257

RESUMEN

Early life adversity can alter reproductive development in humans, changing the timing of pubertal onset and sexual activity. One common form of early adversity is limited access to resources. This adversity can be modeled in rats using the limited bedding/nesting model (LBN), in which dams and pups are placed in a low resource environment from pups' postnatal days 2-9. Our laboratory previously found that adult male rats raised in LBN conditions have elevated levels of plasma estradiol compared to control males. In females, LBN had no effect on plasma hormone levels, pubertal timing, or estrous cycle duration. Estradiol mediates male reproductive behaviors. Thus, here we compared reproductive behaviors in adult males exposed to LBN vs. control housing. LBN males acquired the suite of reproductive behaviors (mounts, intromissions, and ejaculations) more quickly than their control counterparts over 3 weeks of testing. However, there was no effect of LBN in males on puberty onset or masculinization of certain brain regions, suggesting LBN effects on estradiol and reproductive behaviors manifest after puberty. In male and female rats, we next used RNA sequencing to characterize LBN-induced transcriptional changes in the medial preoptic area (mPOA), which underlies male reproductive behaviors. LBN produced sex-specific alterations in gene expression, with many transcripts showing changes in opposite directions. Numerous transcripts altered by LBN in males are regulated by estradiol, linking hormonal changes to molecular changes in the mPOA. Pathway analysis revealed that LBN induced changes in neurosignaling and immune signaling in males and females, respectively. Collectively, these studies reveal novel neurobiological mechanisms by which early life adversity can alter reproductive strategies.


Asunto(s)
Área Preóptica , Conducta Reproductiva , Estrés Psicológico , Transcriptoma , Animales , Femenino , Masculino , Ratas , Estradiol/farmacología , Conducta Sexual Animal
20.
Neuropsychopharmacology ; 47(10): 1764-1775, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35190706

RESUMEN

Incubation of craving is a well-documented phenomenon referring to the intensification of drug craving over extended abstinence. The neural adaptations that occur during forced abstinence following chronic drug taking have been a topic of intense study. However, little is known about the transcriptomic changes occurring throughout this window of time. To define gene expression changes associated with morphine consumption and extended abstinence, male and female rats underwent 10 days of morphine self-administration. Separate drug-naive rats self-administered sucrose in order to compare opioid-induced changes from those associated with natural, non-drug rewards. After one or 30 days of forced abstinence, rats were tested for craving, or nucleus accumbens shell tissue was dissected for RNA sequencing. Morphine consumption was predictive of drug seeking after extended (30 days) but not brief (1 day) abstinence in both sexes. Extended abstinence was also associated with robust sex- and reinforcer-specific changes in gene expression, suggesting sex differences underlying incubation of morphine and sucrose seeking respectively. Importantly, these changes in gene expression occurred without re-exposure to drug-paired cues, indicating that chronic morphine causes long-lasting changes in gene expression that prime the system for increased craving. These findings lay the groundwork for identifying specific therapeutic targets for curbing opioid craving without impacting the natural reward system in males and females.


Asunto(s)
Ansia , Núcleo Accumbens , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacología , Animales , Condicionamiento Operante , Señales (Psicología) , Comportamiento de Búsqueda de Drogas , Femenino , Masculino , Morfina/metabolismo , Ratas , Autoadministración , Sacarosa/farmacología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA