Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Atmos Environ (1994) ; 63: 250-260, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24415904

RESUMEN

High ambient ultrafine particle (UFP) concentrations may play an important role in the adverse health effects associated with living near busy roadways. However, UFP size distributions change rapidly as vehicle emissions dilute and age. These size changes can influence UFP lung deposition rates and dose because deposition in the respiratory system is a strong function of particle size. Few studies to date have measured and characterized changes in near-road UFP size distributions in real-time, thus missing transient variations in size distribution due to short-term fluctuations in wind speed, direction, or particle dynamics. In this study we measured important wind direction effects on near-freeway UFP size distributions and gradients using a mobile platform with 5-s time resolution. Compared to more commonly measured perpendicular (downwind) conditions, parallel wind conditions appeared to promote formation of broader and larger size distributions of roughly one-half the particle concentration. Particles during more parallel wind conditions also changed less in size with downwind distance and the fraction of lung-deposited particle number was calculated to be 15% lower than for downwind conditions, giving a combined decrease of about 60%. In addition, a multivariate analysis of several variables found meteorology, particularly wind direction and temperature, to be important in predicting UFP concentrations within 150 m of a freeway (R2 = 0.46, p = 0.014).

2.
Atmos Environ (1994) ; 51: 311-319, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23997642

RESUMEN

We observed elevated air pollutant concentrations, especially of ultrafine particles (UFP), black carbon (BC) and NO, across the residential neighborhood of the Boyle Heights Community (BH) of Los Angeles, California. Using an electric vehicle mobile platform equipped with fast response instruments, real-time air pollutant concentrations were measured in BH in spring and summer of 2008. Pollutant concentrations varied significantly in the two seasons, on different days, and by time of day, with an overall average UFP concentration in the residential areas of ~33 000 cm-3. The averaged UFP, BC, and NO concentrations measured on Soto St, a major surface street in BH, were 57 000 cm-3, 5.1 µg m-3, and 67 ppb, respectively. Concentrations of UFP across the residential areas in BH were nearly uniform spatially, in contrast to other areas in the greater metropolitan area of Los Angeles where UFP concentrations exhibit strong gradients downwind of roadways. We attribute this "UFP cloud" to high traffic volumes, including heavy duty diesel trucks on the freeways which surround and traverse BH, and substantial numbers of high-emitting vehicles (HEVs) on the surface streets traversing BH. Additionally, the high density of stop signs and lights and short block lengths, requiring frequent accelerations of vehicles, may contribute. The data also support a role for photochemical production of UFP in the afternoon. UFP concentration peaks (5 s average) of up to 9 million particles cm-3 were also observed immediately behind HEVs when they accelerated from stop lights in the BH neighborhood and areas immediately adjacent. Although encounters with HEV during mornings accounted for only about 6% and 17% of time spent monitoring residential areas and major surface streets, HEV contributed to about 28% and 53% of total ultrafine particles measured on the route, respectively. The observation of elevated pollutant number concentrations across the Boyle Heights community highlights how multiple factors combine to create high pollutant levels, and has important human exposure assessment implications, including the potential utility of our data as inputs to epidemiological studies.

3.
Atmos Environ (1994) ; 43(16): 2541-2549, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25379010

RESUMEN

We have observed a wide area of air pollutant impact downwind of a freeway during pre-sunrise hours in both winter and summer seasons. In contrast, previous studies have shown much sharper air pollutant gradients downwind of freeways, with levels above background concentrations extending only 300 m downwind of roadways during the day and up to 500 m at night. In this study, real-time air pollutant concentrations were measured along a 3 600 m transect normal to an elevated freeway 1-2 hours before sunrise using an electric vehicle mobile platform equipped with fast-response instruments. In winter pre-sunrise hours, the peak ultrafine particle (UFP) concentration (~95 000 cm-3) occurred immediately downwind of the freeway. However, downwind UFP concentrations as high as ~ 40 000 cm-3 extended at least 1 200 m from the freeway, and did not reach background levels (~15 000 cm-3) until a distance of about 2 600 m. UFP concentrations were also elevated over background levels up to 600 m upwind of the freeway. Other pollutants, such as NO and particle-bound polycyclic aromatic hydrocarbons, exhibited similar long-distance downwind concentration gradients. In contrast, air pollutant concentrations measured on the same route after sunrise, in the morning and afternoon, exhibited the typical daytime downwind decrease to background levels within ~300 m as found in earlier studies. Although pre-sunrise traffic volumes on the freeway were much lower than daytime congestion peaks, downwind UFP concentrations were significantly higher during pre-sunrise hours than during the daytime; UFP and NO concentrations were also strongly correlated with traffic counts on the freeway. We associate these elevated pre-sunrise concentrations over a wide area with a nocturnal surface temperature inversion, low wind speeds, and high relative humidity. Observation of a wide air pollutant impact area downwind of a major roadway prior to sunrise has important exposure assessment implications since it demonstrates extensive roadway impacts on residential areas during pre-sunrise hours, when most people are at home.

4.
Sci Total Environ ; 553: 474-485, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26938315

RESUMEN

This study attempts to explain explicitly the direct and quantitative effects of complicated urban built-environment on near-road dispersion and levels of vehicular emissions at the scale of several city blocks, based on ultrafine particle concentrations ([UFP]). On short timescales, ultrafine particles are an excellent proxy for other roadway emissions. Five measurement sites in the greater Los Angeles with different built environments but similar mesoscale meteorology were explored. After controlling for traffic, for most sampling days and sites, morning [UFP] were higher than those in the afternoon due to limited dispersion capacity combined with a relatively stable surface layer. [UFP] at the intersection corners were also higher than those over the sampling sites, implying that accelerating vehicles around the intersections contributed to [UFP] elevation. In the calm morning, the areal aspect ratio (Ararea), developed in this study for real urban configurations, showed a strong relationship with block-scale [UFP]. Ararea includes the building area-weighted building height, the amount of open space, and the building footprint. In the afternoon, however, when wind speeds were generally higher and turbulence was stronger, vertical turbulence intensity σw was the most effective factor controlling [UFP]. The surrounding built environment appears to play an indirect role in observed [UFP], by affecting surface level micrometeorology. The effects are substantial; controlling for traffic, differences in Ararea and building heterogeneity were related to differences in [UFP] of factors of two to three among our five study sites. These results have significant implications for pedestrian exposure as well as transit-oriented urban planning.

5.
J Expo Anal Environ Epidemiol ; 15(5): 377-87, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15592444

RESUMEN

Real-time and integrated measurements of gaseous and particulate pollutants were conducted inside five conventional diesel school buses, a diesel bus with a particulate trap, and a bus powered by compressed natural gas (CNG) to determine the range of children's exposures during school bus commutes and conditions leading to high exposures. Measurements were made during 24 morning and afternoon commutes on two Los Angeles Unified School District bus routes from South to West Los Angeles, with seven additional runs on a rural/suburban route, and three runs to test the effect of window position. For these commutes, the mean concentrations of diesel vehicle-related pollutants ranged from 0.9 to 19 microg/m(3) for black carbon, 23 to 400 ng/m(3) for particle-bound polycyclic aromatic hydrocarbon (PB-PAH), and 64 to 220 microg/m(3) for NO(2). Concentrations of benzene and formaldehyde ranged from 0.1 to 11 microg/m(3) and 0.3 to 5 microg/m(3), respectively. The highest real-time concentrations of black carbon, PB-PAH and NO(2) inside the buses were 52 microg/m(3), 2000 ng/m(3), and 370 microg/m(3), respectively. These pollutants were significantly higher inside conventional diesel buses compared to the CNG bus, although formaldehyde concentrations were higher inside the CNG bus. Mean black carbon, PB-PAH, benzene and formaldehyde concentrations were higher when the windows were closed, compared with partially open, in part, due to intrusion of the bus's own exhaust into the bus cabin, as demonstrated through the use of a tracer gas added to each bus's exhaust. These same pollutants tended to be higher on urban routes compared to the rural/suburban route, and substantially higher inside the bus cabins compared to ambient measurements. Mean concentrations of pollutants with substantial secondary formation, such as PM(2.5), showed smaller differences between open and closed window conditions and between bus routes. Type of bus, traffic congestion levels, and encounters with other diesel vehicles contributed to high exposure variability between runs.


Asunto(s)
Contaminación del Aire Interior/análisis , Exposición a Riesgos Ambientales , Emisiones de Vehículos/análisis , Niño , Protección a la Infancia , Monitoreo del Ambiente , Combustibles Fósiles , Humanos , Los Angeles , Vehículos a Motor , Población Rural , Estudiantes , Población Urbana
6.
Res Rep Health Eff Inst ; (130 Pt 1): 1-107; discussion 109-27, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16454009

RESUMEN

This study on the relationships of indoor, outdoor, and personal air (RIOPA) was undertaken to collect data for use in evaluating the contribution of outdoor sources of air toxics and particulate matter (PM) to personal exposure. The study was not designed to obtain a population-based sample, but rather to provide matched indoor, outdoor, and personal concentrations in homes that varied in their proximity to outdoor pollution sources and had a wide range of air exchange rates (AERs). This design allowed examination of relations among indoor, outdoor, and personal concentrations of air toxics and PM across a wide range of environmental conditions; the resulting data set obtained for a wide range of environmental pollutants and AERs can be used to evaluate exposure models. Approximately 100 households with residents who do not smoke participated in each of three cities in distinct locations expected to have different climates and housing characteristics: Elizabeth, New Jersey; Houston, Texas; and Los Angeles County, California. Questionnaires were administered to characterize homes, neighborhoods, and personal activities that might affect exposures. The concentrations of a suite of volatile organic compounds (VOCs) and carbonyl compounds, as well as the fraction of airborne particulate matter with a mass median aerodynamic diameter < or = 2.5 microm (PM2.5), were measured during continuous 48-hour sessions in which indoor, outdoor, and personal air samples were collected simultaneously. During the same 48-hour period, the AER (exchanges/hr; x hr(-1)) was determined in each home, and carbonyl compounds were measured inside vehicle cabins driven by a subset of the participants. In most of the homes, measurements were made twice, during two different seasons, to obtain a wide distribution of AERs. This report presents in detail the data collection methods, quality control measures, and initial analyses of data distributions and relations among indoor, outdoor, and personal concentrations. The results show that indoor sources dominated personal and indoor air concentrations of many measured VOCs and carbonyl compounds. For several measured species, personal concentrations were higher than either indoor or outdoor concentrations, indicating the presence of some sources closely related to personal activities. For some species there were no significant indoor sources in the majority of the homes; thus indoor concentrations were mainly determined by outdoor concentrations in these homes. The range of distributions of air concentrations for the measured VOCs, formaldehyde and acetaldehyde, PM2.5, and AERs were generally consistent with values reported previously in the literature. Thus associations derived from or models based on this data set that may link the influence of outdoor sources with indoor air concentrations of air toxics and PM2.5 can be relevant to other urban settings. The simultaneous measurements of indoor concentrations, outdoor concentrations, AERs, and room volumes allowed the use of a mass balance model, under the steady-state approximation, to mechanistically examine the relative contributions of indoor and outdoor sources to measured indoor concentrations on a home-by-home basis. Estimated indoor source strengths for VOCs and carbonyl compounds varied widely from home to home, consistent with the indoor-outdoor concentration patterns, as shown in scatter plots. The indoor source estimations agreed with published values for PM2.5 and with the general understanding of sources of VOCs and carbonyl compounds. The source strengths reported here, derived from hundreds of homes, are an important contribution to the literature on exposure to air toxics. For the first time for many compounds, these estimates present a cohesive set of measurements across a range of air toxics in paired indoor, outdoor, and personal samples along with AER and questionnaire results that can be used for future analyses of indoor air quality. The estimation of outdoor contributions to measured indoor concentrations provides insights about the relative importance of indoor and outdoor sources in determining indoor concentrations, the main determinant of personal exposure for most of the measured compounds. In this report simple statistical tests mainly of the pooled data were used to analyze differences by sampling site, emission source type, season, home type, and home age. Paired adult-child personal concentrations within the same home were also compared using the pooled data set. These analyses generated some intriguing results that warrant more in-depth investigation in the future.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Movimientos del Aire , Humanos , Compuestos Orgánicos/análisis , Tamaño de la Partícula , Control de Calidad , Reproducibilidad de los Resultados , Encuestas y Cuestionarios , Estados Unidos , Salud Urbana , Volatilización
7.
J Air Waste Manag Assoc ; 55(2): 241-7, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15796114

RESUMEN

To reduce public exposure to diesel particulate matter (DPM), the California Air Resources Board has begun adoption of a series of rules to reduce these emissions from in-use heavy-duty vehicles. Passive diesel particulate filter (DPF) after-treatment technologies are a cost-effective method to reduce DPM emissions and have been used on a variety of vehicles worldwide. Two passive DPFs were interim-verified in California and approved federally for use in most 1994--2002 engine families for vehicles meeting min engine exhaust temperature requirements for successful filter regeneration. Some vehicles, however, may not be suited to passive DPFs because of lower engine exhaust temperatures. The purpose of this study was to determine the applicability of two types of passive DPFs to solid waste collection vehicles, the group of vehicles for which California recently mandated in-use DPM reductions. We selected 60 collection vehicles to represent the four main types of collection vehicle duty cycles--rolloffs, and front-end, rear, and side loaders--and collected second-by-second engine exhaust temperature readings for one week from each vehicle. As a group, the collection vehicles exhibited low engine exhaust temperatures, making the application of passive DPFs to these vehicles difficult. Only 35% of tested vehicles met the temperature requirements for one passive DPF, whereas 60% met the temperature requirements for the other. Engine exhaust temperatures varied by vehicle type. Side and front-end loaders met the engine exhaust temperature requirements in the greatest number of cases with approximately 50-90% achieving the required regeneration temperatures. Only 8-25% of the rear loader and roll-off collection vehicles met the engine exhaust temperature requirements. Solid waste collection vehicles represent a diverse fleet with a variety of duty cycles. Low engine exhaust temperatures will need to be addressed for successful use of passive DPFs in this application.


Asunto(s)
Contaminantes Atmosféricos/aislamiento & purificación , Eliminación de Residuos , Emisiones de Vehículos/prevención & control , California , Ambiente , Diseño de Equipo , Filtración , Vehículos a Motor , Tamaño de la Partícula , Tecnología/tendencias , Temperatura
8.
J Air Waste Manag Assoc ; 55(10): 1418-30, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16295266

RESUMEN

Real-time concentrations of black carbon, particle-bound polycyclic aromatic hydrocarbons, nitrogen dioxide, and fine particulate counts, as well as integrated and real-time fine particulate matter (PM2.5) mass concentrations were measured inside school buses during long commutes on Los Angeles Unified School District bus routes, at bus stops along the routes, at the bus loading/unloading zone in front of the selected school, and at nearby urban "background" sites. Across all of the pollutants, mean concentrations during bus commutes were higher than in any other microenvironment. Mean exposures (mean concentration times time spent in a particular microenvironment) in bus commutes were between 50 and 200 times greater than those for the loading/unloading microenvironment, and 20-40 times higher than those for the bus stops, depending on the pollutant. Although the analyzed school bus commutes represented only 10% of a child's day, on average they contributed one-third of a child's 24-hr overall black carbon exposure during a school day. For species closely related to vehicle exhaust, the within- cabin exposures were generally dominated by the effect of surrounding traffic when windows were open and by the bus's own exhaust when windows were closed. Low-emitting buses generally exhibited high concentrations only when traveling behind a diesel vehicle, whereas high-emitting buses exhibited high concentrations both when following other diesel vehicles and when idling without another diesel vehicle in front of the bus. To reduce school bus commute exposures, we recommend minimizing commute times, avoiding caravanning with other school buses, using the cleanest buses for the longest bus routes, maintaining conventional diesel buses to eliminate visible emissions, and transitioning to cleaner fuels and advanced particulate control technologies as soon as possible.


Asunto(s)
Ambiente , Exposición a Riesgos Ambientales , Transportes , Contaminantes Ocupacionales del Aire/análisis , California , Carbono/análisis , Niño , Humanos , Dióxido de Nitrógeno/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Instituciones Académicas
9.
J Expo Anal Environ Epidemiol ; 14(1): 44-59, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14726944

RESUMEN

Recent state and federal public school class-size reduction initiatives, increased elementary and pre-K enrollment driven by population growth and immigration, and limited resources for capital projects, modernization, and maintenance at aging schools have increased the prevalence of prefabricated, portable classrooms (portables). At present, approximately one of three California students are taught in portables, whose use is especially prevalent in more populated counties such as Los Angeles, home to the nation's second largest school district. Limited data existed on chemical compound air concentrations, and thus exposures, inside American public schools. Measurements have been limited, usually performed in complaint schools, and varied in sampling protocols and analysis methods. To address a school environment and children's health issue of present concern, an assessment of public school portables was conducted in Los Angeles County. Seven schools in two school districts were recruited, from which 20 classrooms--13 portables, seven in main buildings--were randomly selected. We report indoor air concentrations of 21 target toxic and odorous volatile organic compounds (VOCs), including formaldehyde and acetaldehyde, measured with passive samplers (DNSH PAKS and 3M OVM 3500) in the cooling and heating seasons between June 2000 and June 2001. None of the measured indoor air formaldehyde concentrations exceeded the existing California Air Resources Board guideline (50 ppb, or 60 microg/m(3)). The main sources of aldehydes in classrooms, especially portables, were likely interior finish materials and furnishings made of particleboard without lamination. Indoor air VOC concentrations were generally low in this pilot study. The four most prevalent VOCs measured were toluene, m-/p-xylene, alpha-pinene, and delta-limonene; likely indoor sources were personal, teaching, and cleaning products. Future schools research should attempt larger samples over larger geographical areas.


Asunto(s)
Contaminación del Aire Interior/análisis , Compuestos Orgánicos/análisis , Instituciones Académicas , Ventilación , Acetaldehído/análisis , Aire Acondicionado , Monitoreo del Ambiente/métodos , Formaldehído/análisis , Humanos , Los Angeles , Compuestos Orgánicos/química , Proyectos Piloto , Temperatura , Volatilización
10.
J Air Waste Manag Assoc ; 52(1): 50-7, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15152664

RESUMEN

Nitrogen dioxide is a ubiquitous pollutant in urban areas. Indoor NO2 concentrations are influenced by penetration of outdoor concentrations and by indoor sources. The objectives of this study were to evaluate personal exposure to NO2, taking into account human time-activity patterns in four Mexican cities. Passive filter badges were used for indoor, outdoor, and personal NO2 measurements over 48 hr and indoor workplace measurements over 16 hr. Volunteers completed a questionnaire on exposure factors and a time-activity diary during the sample period. An unpaired t test, an analysis of variance (ANOVA), and a linear regression were performed to compare differences among cities and mean personal NO2 concentrations involving housing characteristics, as well as to determine which variables predicted the personal NO2 concentration. Sampling periods were in April, May, and June 1996 in Mexico City, Guadalajara, Cuernavaca, and Monterrey. All 122 volunteers in the study were working adults, with a mean age of 34 (SD +/- 7.38); 64% were female, and the majority worked in public offices and universities. The highest NO2 concentrations were found in Mexico City (36 ppb for outdoor, 57 ppb for indoor, and 39 ppb for personal concentration) and the lowest in Monterrey (19 ppb for outdoor, 24 ppb for indoor, and 24 ppb for personal concentration). Significant differences in NO2 concentrations were found among the cities in different microenvironments. During the sampling period, volunteers spent 85% of their time indoors. The highest personal NO2 concentration was found when volunteers kept their windows closed (p = 0.03). In the regression model adjusted by city and gender, the best predictors of personal NO2 concentration were outdoor levels and time spent outdoors (R2 = 0.68). These findings suggest that outdoor NO2 concentrations were an important influence on the personal exposure to NO2, due to the specific characteristics and personal behavior of the people in these Mexican cities.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Exposición a Riesgos Ambientales , Modelos Teóricos , Dióxido de Nitrógeno/análisis , Oxidantes Fotoquímicos/análisis , Adulto , Femenino , Humanos , Masculino , México , Salud Pública , Población Urbana , Lugar de Trabajo
11.
Environ Sci Technol ; 43(21): 8039-45, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19924920

RESUMEN

Real time air pollutant concentrations were measured downwind of Santa Monica Airport (SMA), using an electric vehicle mobile platform equipped with fast response instruments in spring and summer of 2008. SMA is a general aviation airport operated for private aircraft and corporate jets in Los Angeles County, California. An impact area of elevated ultrafine particle (UFP) concentrations was observed extending beyond 660 m downwind and 250 m perpendicular to the wind on the downwind side of SMA. Aircraft operations resulted in average UFP concentrations elevated by factors of 10 and 2.5 at 100 and 660 m downwind, respectively, over background levels. The long downwind impact distance (i.e., compared to nearby freeways at the same time of day) is likely primarily due to the large volumes of aircraft emissions containing higher initial concentrations of UFP than on-road vehicles. Aircraft did not appreciably elevate average levels of black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (PB-PAH), although spikes in concentration of these pollutants were observed associated with jet takeoffs. Jet departures resulted in peak 60-s average concentrations of up to 2.2 x 10(6) cm(-3), 440 ng m(-3), and 30 microg m(-3) for UFP, PB-PAH, and BC, respectively, 100 m downwind of the takeoff area. These peak levels were elevated by factors of 440, 90, and 100 compared to background concentrations. Peak UFP concentrations were reasonably correlated (r(2) = 0.62) with fuel consumption rates associated with aircraft departures, estimated from aircraft weights and acceleration rates. UFP concentrations remained elevated for extended periods associated particularly with jet departures, but also with jet taxi and idle, and operations of propeller aircraft. UFP measured downwind of SMA had a median mode of about 11 nm (electric mobility diameter), which was about half of the 22 nm median mode associated with UFP from heavy duty diesel trucks. The observation of highly elevated ultrafine particle concentrations in a large residential area downwind of this local airport has potential health implications for persons living near general aviation airports.


Asunto(s)
Contaminantes Atmosféricos/análisis , Aeronaves , Características de la Residencia , California , Geografía , Conceptos Meteorológicos , Tamaño de la Partícula , Material Particulado/análisis , Material Particulado/química , Factores de Tiempo
12.
Salud Publica Mex ; 50(1): 67-75, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18297184

RESUMEN

OBJECTIVE: A study was conducted to evaluate personal ozone exposure (O3p) among asthmatic children residing in Mexico City. MATERIAL AND METHODS: A total of 158 children were recruited from December 1998 to April 2000. On average, three O3p measurements were obtained per child using passive badges. Time-activity patterns were recorded in a diary. Daily ambient ozone measurements (O3a) were obtained from the fixed station, according to children's residence. Levels of O3a and ozone, weighted by time spent in different micro-environments (O3w), were used as independent variables in order to model O3p concentrations using a mixed-effects model. RESULTS: Mean O3p was 7.8 ppb. The main variables in the model were: time spent indoors, distance between residence and fixed station, follow-up group, and two interaction terms (overall R(2)=0.50, p<0.05). CONCLUSIONS: The O3w concentrations can be used as a proxy for O3p, taking into account time-activity patterns and the place of residence of asthmatic Mexican children.


Asunto(s)
Asma , Exposición a Riesgos Ambientales , Ozono/efectos adversos , Adolescente , Niño , Femenino , Humanos , Masculino , México , Población Urbana
13.
Environ Sci Technol ; 38(10): 2760-8, 2004 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15212248

RESUMEN

Indoor and outdoor concentrations of six chlordane components (trans-chlordane, cis-chlordane, trans-nonachlor, cis-nonachlor, oxychlordane, and MC5) were measured at 157 residences, all of which were inhabited by nonsmoking individuals, in three urban areas during June 1999-May 2000. The analyses were conducted on a subset of 48 h integrated samples collected in Los Angeles County, CA, Houston, TX, and Elizabeth, NJ within the Relationship of Indoor, Outdoor, and Personal Air (RIOPA) study. Both particle-bound (PM2.5; quartz fiber filter) and vapor-phase (PUF sorbant) chlordane concentrations were separately measured by GC/EI MS after solvent extraction. The outdoor (gas + particle) total chlordane (trans-chlordane + cis-chlordane + trans-nonachlor + cis-nonachlor) concentrations ranged from 0.036 to 4.27 ng m(-3) in Los Angeles County, from 0.008 to 11.00 ng m(-3) in Elizabeth, and from 0.062 to 1.77 ng m(-3) in Houston. The corresponding indoor total chlordane concentrations ranged from 0.037 to 112.0 ng m(-3) in Los Angeles County, from 0.260 to 31.80 ng m(-3) in Elizabeth, and from 0.410 to 38.90 ng m(-3) in Houston study homes. Geometric mean concentrations were higher in indoor air than outdoor air (1.98 vs 0.58 ng m(-3) in CA; 1.30 vs 0.17 ng m(-3) in NJ; 4.18 vs 0.28 ng m(-3) in TX), which suggests there are significant indoor sources of chlordane species in a subset of homes in each of the three cities. Calculated source strengths relate to home age, with the highest apparent indoor source strengths occurring in unattached single-family homes built during the period from 1945 to 1959. Principle indoor sources of chlordanes likely include volatilization from residues of indoor application of chlordanes and infiltration from subsurface and foundation application of chlordane-containing termiticides during home construction.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Clordano/análisis , Vivienda , Insecticidas/análisis , Atmósfera/química , Clordano/química , Ciudades , Clima , Isomerismo , Los Angeles , New Jersey , Tamaño de la Partícula , Texas , Salud Urbana
14.
Environ Sci Technol ; 36(12): 2552-9, 2002 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12099449

RESUMEN

The indoor and outdoor concentrations of 30 polycyclic aromatic hydrocarbons (PAHs) were measured in 55 nonsmoking residences in three urban areas during June 1999-May 2000. The data represent the subset of samples collected within the Relationship of Indoor, Outdoor, and Personal Air study (RIOPA). The study collected samples from homes in Los Angeles, CA, Houston, TX, and Elizabeth, NJ. In the outdoor samples, the total PAH concentrations (sigmaPAH) were 4.2-64 ng m(-3) in Los Angeles, 10-160 ng m(-3) in Houston, and 12-110 ng m(-3) in Elizabeth. In the indoor samples, the concentrations of sigmaPAH were 16-220 ng m(-3) in Los Angeles, 21-310 ng m(-3) in Houston, and 22-350 ng m(-3) in Elizabeth. The PAH profiles of low molecular weight PAHs (3-4 rings) in the outdoor samples from the three cities were not significantly different. In contrast, the profiles of 5-7-ring PAHs in thesethree citieswere significantlydifferent, which suggested different dominant PAH sources. The signatures of 5-7-ring PAHs in the indoor samples in each city were similar to the outdoor profiles, which suggested that indoor concentrations of 5-7-ring PAHs were dominated by outdoor sources. Indoor-to-outdoor ratios of the PAH concentrations showed that indoor sources had a significant effect on indoor concentrations of 3-ring PAHs and a smaller effect on 4-ring PAHs and that outdoor sources dominated the indoor concentrations of 5-7-ring PAHs.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Ciudades , Monitoreo del Ambiente , Valores de Referencia , Estados Unidos
15.
Salud pública Méx ; 50(1): 67-75, jan.-feb. 2008. graf, tab
Artículo en Inglés | LILACS | ID: lil-475160

RESUMEN

OBJECTIVE: A study was conducted to evaluate personal ozone exposure (O3p) among asthmatic children residing in Mexico City. MATERIAL AND METHODS: A total of 158 chil-dren were recruited from December 1998 to April 2000. On average, three O3p measurements were obtained per child using passive badges. Time-activity patterns were recorded in a diary. Daily ambient ozone measurements (O3a) were obtained from the fixed station, according to children’s residence. Levels of O3a and ozone, weighted by time spent in different micro-environments (O3w), were used as independent variables in order to model O3p concentrations using a mixed-effects model. RESULTS: Mean O3p was 7.8 ppb. The main variables in the model were: time spent indoors, distance between residence and fixed station, follow-up group, and two interaction terms (overall R²=0.50, p<0.05). CONCLUSIONS: The O3w concentrations can be used as a proxy for O3p, taking into account time-activity patterns and the place of residence of asthmatic Mexican children.


OBJETIVO: Realizamos este estudio para evaluar la exposición personal a ozono (O3p) en niños asmáticos de la Ciudad de México. MATERIAL Y MÉTODOS: Se incluyeron 158 niños entre diciembre de 1998 y abril de 2000. En promedio se obtuvieron tres mediciones por niño, utilizando filtros pasivos para medir O3p. Se caracterizaron los patrones de actividad y las concentraciones ambientales diarias de ozono (O3a) se obtuvieron de estaciones fijas cercanas a la residencia del niño. Los niveles promedio de O3a y las concentraciones ponderadas por el tiempo en diferentes microambientes (O3w) fueron usados como variables independientes para modelar las concentraciones de O3p, utilizando modelos de efectos mixtos. RESULTADOS: La media de O3p fue 7.8 ppb. Las principales variables en el modelo fueron: tiempo en exteriores, distancia, periodo de seguimiento y dos términos de interacción (R²=0.50, p<0.05). CONCLUSIONES: Las concentraciones de O3w pueden usarse como "proxi" de O3p, tomando en cuenta patrones de actividad y lugar de residencia.


Asunto(s)
Adolescente , Niño , Femenino , Humanos , Masculino , Asma , Exposición a Riesgos Ambientales , Ozono/efectos adversos , México , Población Urbana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA