Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Europace ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259657

RESUMEN

Wolff-Parkinson-White syndrome is a cardiovascular disease characterized by abnormal atrio-ventricular conduction facilitated by accessory pathways (APs). Invasive catheter ablation of the AP represents the primary treatment modality. Accurate localization of APs is crucial for successful ablation outcomes, but current diagnostic algorithms based on the 12 lead electrocardiogram (ECG) often struggle with precise determination of AP locations. In order to gain insight into the mechanisms underlying localization failures observed in current diagnostic algorithms, we employ a virtual cardiac model to elucidate the relationship between AP location and ECG morphology. We first introduce a cardiac model of electrophysiology that was specifically tailored to represent antegrade APs in the form of a short atrio-ventricular bypass tract. Locations of antegrade APs were then automatically swept across both ventricles in the virtual model to generate a synthetic ECG database consisting of 9271 signals. Regional grouping of antegrade APs revealed overarching morphological patterns originating from diverse cardiac regions. We then applied variance-based sensitivity analysis relying on polynomial chaos expansion on the ECG database to mathematically quantify how variation in AP location and timing relates to morphological variation in the 12 lead ECG. We utilized our mechanistic virtual model to showcase limitations of AP localization using standard ECG-based algorithms and provide mechanistic explanations through exemplary simulations. Our findings highlight the potential of virtual models of cardiac electrophysiology not only to deepen our understanding of the underlying mechanisms of Wolff-Parkinson-White syndrome but also to potentially enhance the diagnostic accuracy of ECG-based algorithms and facilitate personalized treatment planning.

2.
Sci Data ; 10(1): 531, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553349

RESUMEN

Mechanistic cardiac electrophysiology models allow for personalized simulations of the electrical activity in the heart and the ensuing electrocardiogram (ECG) on the body surface. As such, synthetic signals possess known ground truth labels of the underlying disease and can be employed for validation of machine learning ECG analysis tools in addition to clinical signals. Recently, synthetic ECGs were used to enrich sparse clinical data or even replace them completely during training leading to improved performance on real-world clinical test data. We thus generated a novel synthetic database comprising a total of 16,900 12 lead ECGs based on electrophysiological simulations equally distributed into healthy control and 7 pathology classes. The pathological case of myocardial infraction had 6 sub-classes. A comparison of extracted features between the virtual cohort and a publicly available clinical ECG database demonstrated that the synthetic signals represent clinical ECGs for healthy and pathological subpopulations with high fidelity. The ECG database is split into training, validation, and test folds for development and objective assessment of novel machine learning algorithms.


Asunto(s)
Electrocardiografía , Corazón , Humanos , Algoritmos , Aprendizaje Automático , Miocardio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA