RESUMEN
Innate lymphoid cells (ILCs) are critical modulators of mucosal immunity, inflammation, and tissue homeostasis, but their full spectrum of cellular states and regulatory landscapes remains elusive. Here, we combine genome-wide RNA-seq, ChIP-seq, and ATAC-seq to compare the transcriptional and epigenetic identity of small intestinal ILCs, identifying thousands of distinct gene profiles and regulatory elements. Single-cell RNA-seq and flow and mass cytometry analyses reveal compartmentalization of cytokine expression and metabolic activity within the three classical ILC subtypes and highlight transcriptional states beyond the current canonical classification. In addition, using antibiotic intervention and germ-free mice, we characterize the effect of the microbiome on the ILC regulatory landscape and determine the response of ILCs to microbial colonization at the single-cell level. Together, our work characterizes the spectrum of transcriptional identities of small intestinal ILCs and describes how ILCs differentially integrate signals from the microbial microenvironment to generate phenotypic and functional plasticity.
Asunto(s)
Microbioma Gastrointestinal , Inmunidad Innata/genética , Intestinos/inmunología , Intestinos/microbiología , Linfocitos/inmunología , Linfocitos/microbiología , Animales , Secuencia de Bases , Cromatina/metabolismo , Citocinas/inmunología , Epigénesis Genética , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Análisis de la Célula Individual , Transcripción GenéticaRESUMEN
The intestinal microbiota undergoes diurnal compositional and functional oscillations that affect metabolic homeostasis, but the mechanisms by which the rhythmic microbiota influences host circadian activity remain elusive. Using integrated multi-omics and imaging approaches, we demonstrate that the gut microbiota features oscillating biogeographical localization and metabolome patterns that determine the rhythmic exposure of the intestinal epithelium to different bacterial species and their metabolites over the course of a day. This diurnal microbial behavior drives, in turn, the global programming of the host circadian transcriptional, epigenetic, and metabolite oscillations. Surprisingly, disruption of homeostatic microbiome rhythmicity not only abrogates normal chromatin and transcriptional oscillations of the host, but also incites genome-wide de novo oscillations in both intestine and liver, thereby impacting diurnal fluctuations of host physiology and disease susceptibility. As such, the rhythmic biogeography and metabolome of the intestinal microbiota regulates the temporal organization and functional outcome of host transcriptional and epigenetic programs.
Asunto(s)
Ritmo Circadiano , Colon/microbiología , Microbioma Gastrointestinal , Transcriptoma , Animales , Cromatina/metabolismo , Colon/metabolismo , Vida Libre de Gérmenes , Hígado/metabolismo , Ratones , Microscopía Electrónica de RastreoRESUMEN
Macrophages provide a critical systemic network cells of the innate immune system. Emerging data suggest that in addition, they have important tissue-specific functions that range from clearance of surfactant from the lungs to neuronal pruning and establishment of gut homeostasis. The differentiation and tissue-specific activation of macrophages require precise regulation of gene expression, a process governed by epigenetic mechanisms such as DNA methylation, histone modification and chromatin structure. We argue that epigenetic regulation of macrophages is determined by lineage- and tissue-specific transcription factors controlled by the built-in programming of myeloid development in combination with signaling from the tissue environment. Perturbation of epigenetic mechanisms of tissue macrophage identity can affect normal macrophage tissue function and contribute to pathologies ranging from obesity and autoimmunity to neurodegenerative diseases.
Asunto(s)
Epigénesis Genética , Homeostasis/inmunología , Inmunidad Innata/inmunología , Macrófagos , Animales , Diferenciación Celular/inmunología , Linaje de la Célula/inmunología , Humanos , Activación de Macrófagos/inmunología , Macrófagos/citología , Macrófagos/inmunologíaRESUMEN
Tissue availability remains an important limitation of single-cell genomic technologies for investigating cellular heterogeneity in human health and disease. BAL represents a minimally invasive approach to assessing an individual's lung cellular environment for diagnosis and research. However, the lack of high-quality, healthy lung reference data is a major obstacle to using single-cell approaches to study a plethora of lung diseases. Here, we performed single-cell RNA sequencing on over 40,000 cells isolated from the BAL of four healthy volunteers. Of the six cell types or lineages we identified, macrophages were consistently the most numerous across individuals. Our analysis confirmed the expression of marker genes defining cell types despite background signals because of the ambient RNA found in many single-cell studies. We assessed the variability of gene expression across macrophages and defined a distinct subpopulation of cells expressing a set of genes associated with Macrophage Inflammatory Protein 1 (MIP-1). RNA in situ hybridization and reanalysis of published lung single-cell data validated the presence of this macrophage subpopulation. Thus, our study characterizes lung macrophage heterogeneity in healthy individuals and provides a valuable resource for future studies to understand the lung environment in health and disease.
Asunto(s)
Proteínas Inflamatorias de Macrófagos , Macrófagos , Humanos , Proteínas Inflamatorias de Macrófagos/genética , Líquido del Lavado Bronquioalveolar , Voluntarios Sanos , ARNRESUMEN
BACKGROUND: Aspirin-exacerbated respiratory disease (AERD) is characterized by asthma, chronic rhinosinusitis with nasal polyps (CRSwNP), and an intolerance of medications that inhibit cyclooxygenase-1. Patients with AERD have more severe upper and lower respiratory tract disease than do aspirin-tolerant patients with CRSwNP. A dysregulation in arachidonic acid metabolism is thought to contribute to the enhanced sinonasal inflammation in AERD. OBJECTIVE: Our aim was to utilize an unbiased approach investigating arachidonic acid metabolic pathways in AERD. METHODS: Single-cell RNA sequencing (10× Genomics, Pleasanton, Calif) was utilized to compare the transcriptional profile of nasal polyp (NP) cells from patients with AERD and patients with CRSwNP and map differences in the expression of select genes among identified cell types. Findings were confirmed by traditional real-time PCR. Lipid mediators in sinonasal tissue were measured by mass spectrometry. Localization of various proteins within NPs was assessed by immunofluorescence. RESULTS: The gene encoding for 15-lipooxygenase (15-LO), ALOX15, was significantly elevated in NPs of patients with AERD compared to NPs of patients with CRSwNP (P < .05) or controls (P < .001). ALOX15 was predominantly expressed by epithelial cells. Expression levels significantly correlated with radiographic sinus disease severity (r = 0.56; P < .001) and were associated with asthma. The level of 15-oxo-eicosatetraenoic acid (15-Oxo-ETE), a downstream product of 15-LO, was significantly elevated in NPs from patients with CRSwNP (27.93 pg/mg of tissue) and NPs from patients with AERD (61.03 pg/mg of tissue) compared to inferior turbinate tissue from controls (7.17 pg/mg of tissue [P < .001]). Hydroxyprostaglandin dehydrogenase, an enzyme required for 15-Oxo-ETE synthesis, was predominantly expressed in mast cells and localized near 15-LO+ epithelium in NPs from patients with AERD. CONCLUSIONS: Epithelial and mast cell interactions, leading to the synthesis of 15-Oxo-ETE, may contribute to the dysregulation of arachidonic acid metabolism via the 15-LO pathway and to the enhanced sinonasal disease severity observed in AERD.
Asunto(s)
Araquidonato 15-Lipooxigenasa/inmunología , Asma Inducida por Aspirina/inmunología , Trastornos Respiratorios/inmunología , Adulto , Araquidonato 15-Lipooxigenasa/metabolismo , Asma Inducida por Aspirina/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos Respiratorios/metabolismoRESUMEN
BACKGROUND: Traumatic brain injury (TBI) is an under-recognized public health threat. Even mild brain injuries can lead to long-term neurologic impairment. Microglia play a fundamental role in the development and progression of this ensuing neurologic impairment. Despite this, a microglia-specific injury signature has yet to be identified. We hypothesized that TBI would lead to long-term changes in the transcriptional profile of microglial pathways associated with the development of subsequent neurologic impairment. MATERIALS AND METHODS: Male C57BL/6 mice underwent TBI via a controlled cortical impact and were followed longitudinally. FACSorted microglia from TBI mice were subjected to Quantiseq 3'-biased RNA sequencing at 7, 30, and 90 d after TBI. K-means clustering on 396 differentially expressed genes was performed, and gene ontology enrichment analysis was used to determine corresponding enriched processes. RESULTS: Differentially expressed genes in microglia exhibited four main patterns of expression over the course of TBI. In particular, we identified four gene clusters which corresponded to the host defense response, synaptic plasticity, lipid remodeling, and membrane polarization. CONCLUSIONS: Transcriptional profiling within individual populations of microglia after TBI remains a critical unmet research need within the field of TBI. This focused study identified several physiologic processes within microglia that may be associated with development of long-term neurologic impairment after TBI. These data demonstrate the capability of longitudinal transcriptional profiling to uncover potential cell-specific targets for the treatment of TBI.
Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Microglía/patología , Enfermedades del Sistema Nervioso/patología , Transducción de Señal/genética , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Familia de Multigenes/genética , Enfermedades del Sistema Nervioso/etiología , Plasticidad Neuronal/genética , Factores de Tiempo , Regulación hacia ArribaRESUMEN
Rationale: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. Objectives: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells, or other cell types in lung tissue from subjects with pulmonary fibrosis compared with control subjects. Methods: We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data using in situ RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects. Measurements and Main Results: We identified a distinct, novel population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to nonoverlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data. Conclusions: We generated a single-cell atlas of pulmonary fibrosis. Using this atlas, we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next-generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.
Asunto(s)
Células Cultivadas/patología , Células Epiteliales/patología , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Análisis de Secuencia de ARN , Células Madre/patología , Transcriptoma , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , MasculinoRESUMEN
Neuropsychiatric manifestations in lupus (NPSLE) affect â¼20-40% of patients. In the central nervous system, lipocalin-2 (LCN2) can promote injury through mechanisms directly linked to NPSLE, including brain barrier disruption, neurotoxicity, and glial activation. Since LCN2 is elevated in lupus and has been implicated in neuroinflammation, we investigated whether LCN2 is required for the pathogenesis of NPSLE. Here, we investigated the effects of LCN2 deficiency on the development of neurobehavioral deficits in the B6.Sle1.Sle3 (Sle1,3) mouse lupus model. Sle1,3 mice exhibited depression-like behavior and impaired spatial and recognition memory, and these deficits were attenuated in Sle1,3-LCN2KO mice. Whole-brain flow cytometry showed a significant increase in brain infiltrating leukocytes in Sle1,3 mice that was not reduced by LCN2 deficiency. RNA sequencing on sorted microglia revealed that several genes differentially expressed between B6 and Sle1,3 mice were regulated by LCN2, and that these genes are key mediators of the neuroinflammatory cascade. Importantly, LCN2 is upregulated in the cerebrospinal fluid of NPSLE patients across 2 different ethnicities. Our findings establish the Sle1,3 strain as an NPSLE model, demonstrate that LCN2 is a major regulator of the detrimental neuroimmune response in NPSLE, and identify CSF LCN2 as a novel biomarker for NPSLE.
Asunto(s)
Biomarcadores/metabolismo , Leucocitos/inmunología , Lipocalina 2/metabolismo , Vasculitis por Lupus del Sistema Nervioso Central/metabolismo , Inflamación Neurogénica/metabolismo , Animales , Barrera Hematoencefálica , Modelos Animales de Enfermedad , Femenino , Humanos , Lipocalina 2/antagonistas & inhibidores , Lipocalina 2/genética , Vasculitis por Lupus del Sistema Nervioso Central/diagnóstico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Inflamación Neurogénica/diagnóstico , Regulación hacia ArribaRESUMEN
Since the first publications coining the term RNA-seq (RNA sequencing) appeared in 2008, the number of publications containing RNA-seq data has grown exponentially, hitting an all-time high of 2,808 publications in 2016 (PubMed). With this wealth of RNA-seq data being generated, it is a challenge to extract maximal meaning from these datasets, and without the appropriate skills and background, there is risk of misinterpretation of these data. However, a general understanding of the principles underlying each step of RNA-seq data analysis allows investigators without a background in programming and bioinformatics to critically analyze their own datasets as well as published data. Our goals in the present review are to break down the steps of a typical RNA-seq analysis and to highlight the pitfalls and checkpoints along the way that are vital for bench scientists and biomedical researchers performing experiments that use RNA-seq.
Asunto(s)
Análisis de Datos , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN , Animales , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Masculino , Ratones Endogámicos C57BL , Control de Calidad , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Transcriptoma/genéticaRESUMEN
In immune cells, as in all mammalian cells, nuclear DNA is wrapped around histones to form nucleosomes. The positioning and modifications of nucleosomes throughout the genome defines the chromatin state of the cell and has a large impact on gene regulation. Chromatin state is dynamic throughout immune cell development and activation. High-throughput open chromatin assays, such as DNase-seq, can be used to find regulatory element across the genome and, when combined with histone modifications, can specify their function. During hematopoiesis, distal regulatory elements, known as enhancers, are established by pioneer factors that alter chromatin state. Some of these enhancers are lost, some are gained, and some are maintained as a memory of the cell's developmental origin. The enhancer landscape is unique to the cell lineage-with different enhancers regulating the same promoter-and determines the mechanism of cell type-specific activation after exposure to stimuli. Histone modification and promoter architecture govern the diverse responses to stimulation. Furthermore, chromatin dynamics may explain the high plasticity of certain tissue-resident immune cell types. Future epigenomic research will depend on the development of more efficient experiments and better methods to associate enhancers with genes. The ultimate goal of mapping genome-wide chromatin state throughout the hematopoietic tree will help illuminate the mechanisms behind immune cell development and function.
Asunto(s)
Histonas/metabolismo , Sistema Inmunológico , Inmunidad Celular , Animales , Diferenciación Celular , Linaje de la Célula , Ensamble y Desensamble de Cromatina/inmunología , Elementos de Facilitación Genéticos/genética , Elementos de Facilitación Genéticos/inmunología , Epigénesis Genética , Epigenómica , Ensayos Analíticos de Alto Rendimiento , Humanos , Conformación Molecular , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/inmunologíaRESUMEN
DNase-seq is primarily used to identify nucleosome-depleted DNase I hypersensitive (DHS) sites genome-wide that correspond to active regulatory elements. However, ≈ 40 yr ago it was demonstrated that DNase I also digests with a ≈ 10-bp periodicity around nucleosomes matching the exposure of the DNA minor groove as it wraps around histones. Here, we use DNase-seq data from 49 samples representing diverse cell types to reveal this digestion pattern at individual loci and predict genomic locations where nucleosome rotational positioning, the orientation of DNA with respect to the histone surface, is stably maintained. We call these regions DNase I annotated regions of nucleosome stability (DARNS). Compared to MNase-seq experiments, we show DARNS correspond well to annotated nucleosomes. Interestingly, many DARNS are positioned over only one side of annotated nucleosomes, suggesting that the periodic digestion pattern attenuates over the nucleosome dyad. DARNS reproduce the arrangement of nucleosomes around transcription start sites and are depleted at ubiquitous DHS sites. We also generated DARNS from multiple lymphoblast cell line (LCL) samples. We found that LCL DARNS were enriched at DHS sites present in most of the original 49 samples but absent in LCLs, while multi-cell-type DARNS were enriched at LCL-specific DHS sites. This indicates that variably open DHS sites are often occupied by rotationally stable nucleosomes in cell types where the DHS site is closed. DARNS provide additional information about precise DNA orientation within individual nucleosomes not available from other nucleosome positioning assays and contribute to understanding the role of chromatin in gene regulation.
Asunto(s)
ADN/genética , ADN/metabolismo , Desoxirribonucleasas/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Sitios de Unión , Línea Celular , Desoxirribonucleasa I/metabolismo , Sitios Genéticos , Genómica , Humanos , Unión ProteicaRESUMEN
The application of deep sequencing to map 5' capped transcripts has confirmed the existence of at least two distinct promoter classes in metazoans: "focused" promoters with transcription start sites (TSSs) that occur in a narrowly defined genomic span and "dispersed" promoters with TSSs that are spread over a larger window. Previous studies have explored the presence of genomic features, such as CpG islands and sequence motifs, in these promoter classes, but virtually no studies have directly investigated the relationship with chromatin features. Here, we show that promoter classes are significantly differentiated by nucleosome organization and chromatin structure. Dispersed promoters display higher associations with well-positioned nucleosomes downstream of the TSS and a more clearly defined nucleosome free region upstream, while focused promoters have a less organized nucleosome structure, yet higher presence of RNA polymerase II. These differences extend to histone variants (H2A.Z) and marks (H3K4 methylation), as well as insulator binding (such as CTCF), independent of the expression levels of affected genes. Notably, differences are conserved across mammals and flies, and they provide for a clearer separation of promoter architectures than the presence and absence of CpG islands or the occurrence of stalled RNA polymerase. Computational models support the stronger contribution of chromatin features to the definition of dispersed promoters compared to focused start sites. Our results show that promoter classes defined from 5' capped transcripts not only reflect differences in the initiation process at the core promoter but also are indicative of divergent transcriptional programs established within gene-proximal nucleosome organization.
Asunto(s)
Cromatina , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Transcripción Genética , Animales , Islas de CpG , Humanos , Regiones Promotoras GenéticasRESUMEN
Normal kidney development requires coordinated interactions between multiple progenitor cell lineages. The Foxd1+ stromal progenitors are critical for normal nephrogenesis and their heterogeneity is increasingly appreciated. However, the molecular mechanisms and trajectories that drive the differentiation of Foxd1+ cells toward the renal stroma, capsule, mesangial cells, renin cells, pericytes, and vascular smooth muscle cells (VSMCs) are poorly understood. Recent work has implicated Tcf21, a mesoderm-specific bHLH transcription factor critical for embryogenesis, in the development of the kidney stroma and perivascular cells. To investigate the role of Tcf21 in Foxd1+ cells, we performed single-cell RNA sequencing (scRNA-seq) on GFP+ cells from E14.5 Foxd1 Cre ;Rosa26 mTmG ;Tcf21 f/f kidneys ( Tcf21 -cKO) and Foxd1 Cre controls. Clustering of the entire dataset identified a large stromal population and a smaller representation of non-stromal lineages. Subclustering of stromal cells identified six populations associated with healthy kidney development: medullary/perivascular, proliferating, differentiating nephron, nephrogenic zone-associated, collecting duct-associated, and ureteric. Loss of Tcf21 resulted in a dramatic reduction in the medullary/perivascular, proliferating, nephrogenic zone-associated, and collecting duct-associated stromal subpopulations. Immunostaining confirmed that Tcf21 -cKO has a severe constriction of the medullary and collecting duct-associated stromal space. We identified and validated a cluster unique to Tcf21 -cKO kidneys exhibiting mosaic expression of genes from nephrogenic, proliferating, medullary, and perivascular stromal cells spanning across all pseudotime, suggesting cells halted in the midst of differentiation. These findings underscore a critical role for Tcf21 in the emergence of Foxd1+ derivatives, with loss of Tcf21 leading to a shift in stromal cell fates that results in abnormal kidney development. NEW & NOTEWORTHY: The mechanisms responsible for the emergence of renal stromal heterogeneity has been unknown. Using scRNA-seq on Foxd1+ enriched cells from E14.5 kidneys, we identified seven molecularly distinct stromal populations and their regional association. The data suggest that the transcription factor Tcf21 regulates the adoption of fates by Foxd1+ cells that is required to form the normal milieu of stromal derivatives for the development of a kidney of normal size and function.
RESUMEN
Introduction: Macrophage function is determined by microenvironment and origin. Brain and retinal microglia are both derived from yolk sac progenitors, yet their microenvironments differ. Utilizing single-cell RNA sequencing (scRNA-seq) data from mice, we tested the hypothesis that retinal and brain microglia exhibit distinct transcriptional profiles due to their unique microenvironments. Methods: Eyes and brains from 2-4 month wildtype mice were combined (20 eyes; 3 brains) to yield one biologically diverse sample per organ. Each tissue was digested into single cell suspensions, enriched for immune cells, and sorted for scRNA-seq. Analysis was performed in Seurat v3 including clustering, integration, and differential expression. Multi-parameter flow cytometry was used for validation of scRNA-seq results. Lymphocytic choriomeningitis virus (LCMV) Clone 13, which produces a systemic, chronic, and neurotropic infection, was used to validate scRNA-seq and flow cytometry results in vivo. Results: Cluster analysis of integrated gene expression data from eye and brain identified 6 Tmem119 + P2ry12 + microglial clusters. Differential expression analysis revealed that eye microglia were enriched for more pro-inflammatory processes including antigen processing via MHC class I (14.0-fold, H2-D1 and H2-K1) and positive regulation of T-cell immunity (8.4-fold) compared to brain microglia. Multi-parameter flow cytometry confirmed that retinal microglia expressed 3.2-fold greater H2-Db and 263.3-fold more H2-Kb than brain microglia. On Day 13 and 29 after LCMV infection, CD8+ T-cell density was greater in the retina than the brain. Discussion: Our data demonstrate that the microenvironment of retina and brain differs, resulting in microglia-specific gene expression changes. Specifically, retinal microglia express greater MHC class I by scRNA-seq and multi-parameter flow cytometry, resulting in a possibly enhanced capability to stimulate CD8+ T-cell inflammation during LCMV infection. These results may explain tissue-specific differences between retina and brain during systemic viral infections and CD8+ T-cell driven autoimmune disease.
Asunto(s)
Encéfalo , Microglía , Retina , Animales , Microglía/inmunología , Microglía/metabolismo , Ratones , Retina/inmunología , Retina/patología , Encéfalo/inmunología , Encéfalo/patología , Encéfalo/metabolismo , Ratones Endogámicos C57BL , Virus de la Coriomeningitis Linfocítica/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Linfocitos T/inmunología , Inflamación/inmunología , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Análisis de la Célula Individual , Linfocitos T CD8-positivos/inmunología , TranscriptomaRESUMEN
Background: Eosinophilic esophagitis (EoE) is a chronic T helper type 2 (Th2)-associated inflammatory disorder triggered by food allergens, resulting in esophageal dysfunction through edema, fibrosis, and tissue remodeling. The role of epithelial remodeling in EoE pathogenesis is critical but not fully understood. Objective: To investigate the role of epithelial IKKß/NFκB signaling in EoE pathogenesis using a mouse model with conditional Ikk ß knockout in esophageal epithelial cells ( Ikk ß EEC-KO ). Methods: EoE was induced in Ikkß EEC-KO mice through skin sensitization with MC903/Ovalbumin (OVA) followed by intraesophageal OVA challenge. Histological and transcriptional analyses were performed to assess EoE features. Single-cell RNA sequencing (scRNA-seq) was used to profile esophageal mucosal cell populations and gene expression changes. Results: Ikkß EEC-KO /EoE mice exhibited hallmark EoE features, including eosinophil infiltration, intraepithelial eosinophils, microabscesses, basal cell hyperplasia, and lamina propria remodeling. RNA-seq revealed significant alterations in IKKß/NFκB signaling pathways, with decreased expression of RELA and increased expression of IKKß negative regulators. scRNA- seq analyses identified disrupted epithelial differentiation and barrier integrity, alongside increased type 2 immune responses and peptidase activity. Conclusion: Our study demonstrates that loss of epithelial IKKß signaling exacerbates EoE pathogenesis, highlighting the critical role of this pathway in maintaining epithelial homeostasis and preventing allergic inflammation. The Ikkß EEC-KO /EoE mouse model closely mirrors human EoE, providing a valuable tool for investigating disease mechanisms and therapeutic targets. This model can facilitate the development of strategies to prevent chronic inflammation and tissue remodeling in EoE. Key Messages: Critical Role of Epithelial IKKß/NFκB Signaling: Loss of this signaling exacerbates EoE, causing eosinophil infiltration, basal cell hyperplasia, and tissue remodeling, highlighting its importance in esophageal health.Molecular Insights and Therapeutic Targets: scRNA-seq identified disrupted epithelial differentiation, barrier integrity, and enhanced type 2 immune responses, suggesting potential therapeutic targets for EoE. Relevance of the Ikkß EEC-KO /EoE Mouse Model: This model replicates human EoE features, making it a valuable tool for studying EoE mechanisms and testing treatments, which can drive the development of effective therapies. Capsule Summary: This study reveals the crucial role of epithelial IKKß/NFκB signaling in EoE, providing insights into disease mechanisms and potential therapeutic targets, highly relevant for advancing clinical management of EoE.
RESUMEN
Characterization of gene lists obtained from high-throughput genomic experiments is an essential task to uncover the underlying biological insights. A common strategy is to perform enrichment analyses that utilize standardized biological annotations, such as GO and KEGG pathways, which attempt to encompass all domains of biology. However, this approach provides generalized, static results that may fail to capture subtleties associated with research questions within a specific domain. Thus, there is a need for an application that can provide precise, relevant results by leveraging the latest research. We have therefore developed an interactive web application, Macrophage Annotation of Gene Network Enrichment Tool (MAGNET), for performing enrichment analyses on gene sets that are specifically relevant to macrophages. Using the hypergeometric distribution, MAGNET assesses the significance of overlapping genes with annotations that were curated from published manuscripts and data repositories. We implemented numerous features that enhance utility and user-friendliness, such as the simultaneous testing of multiple gene sets, different visualization options, option to upload custom datasets, and downloadable outputs. Here, we use three example studies compared against our current database of ten publications on mouse macrophages to demonstrate that MAGNET provides relevant and unique results that complement conventional enrichment analysis tools. Although specific to macrophage datasets, we envision MAGNET will catalyze developments of similar applications in other domains of interest. MAGNET can be freely accessed at the URL https://magnet-winterlab.herokuapp.com. Website implemented in Python and PostgreSQL, with all major browsers supported. The source code is available at https://github.com/sychen9584/MAGNET.
Asunto(s)
Redes Reguladoras de Genes , Imanes , Animales , Ratones , Programas Informáticos , Genómica/métodos , InternetRESUMEN
Eosinophilic esophagitis (EoE) is an esophageal immune-mediated disease characterized by eosinophilic inflammation and epithelial remodeling, including basal cell hyperplasia (BCH). Although BCH is known to correlate with disease severity and with persistent symptoms in patients in histological remission, the molecular processes driving BCH remain poorly defined. Here, we demonstrate that BCH is predominantly characterized by an expansion of nonproliferative suprabasal cells that are still committed to early differentiation. Furthermore, we discovered that suprabasal and superficial esophageal epithelial cells retain progenitor identity programs in EoE, evidenced by increased quiescent cell identity scoring and the enrichment of signaling pathways regulating stem cell pluripotency. Enrichment and trajectory analyses identified SOX2 and KLF5 as potential drivers of the increased quiescent identity and epithelial remodeling observed in EoE. Notably, these alterations were not observed in gastroesophageal reflux disease. These findings provide additional insights into the differentiation process in EoE and highlight the distinct characteristics of suprabasal and superficial esophageal epithelial cells in the disease.
Asunto(s)
Esofagitis Eosinofílica , Humanos , Esofagitis Eosinofílica/patología , Hiperplasia/patología , Células Epiteliales/metabolismoRESUMEN
Macrophages (MΦ) play a role in neonatal etiologies of obstructive cholestasis, however, the role for precise MΦ subsets remains poorly defined. We developed a neonatal murine model of bile duct ligation (BDL) to characterize etiology-specific differences in neonatal cholestatic MΦ polarization. Neonatal BDL surgery was performed on female BALB/c mice at 10 days of life (DOL) with sham laparotomy as controls. Comparison was made to the Rhesus Rotavirus (RRV)-induced murine model of biliary atresia (BA). Evaluation of changes at day 7 after surgery (BDL and sham groups) and murine BA (DOL14) included laboratory data, histology (H&E, anti-CD45 and anti-CK19 staining), flow cytometry of MΦ subsets by MHCII and Ly6c expression, and single cell RNA-sequencing (scRNA-seq) analysis. Neonatal BDL achieved a 90% survival rate; mice had elevated bile acids, bilirubin, and alanine aminotransferase (ALT) versus controls (p < 0.05 for all). Histology demonstrated hepatocellular injury, CD45+ portal infiltrate, and CK19+ bile duct proliferation in neonatal BDL. Comparison to murine BA showed increased ALT in neonatal BDL despite no difference in histology Ishak score. Neonatal BDL had significantly lower MHCII-Ly6c+ MΦ versus murine BA, however, scRNA-seq identified greater etiology-specific MΦ heterogeneity with increased endocytosis in neonatal BDL MΦ versus cellular killing in murine BA MΦ. We generated an innovative murine model of neonatal obstructive cholestasis with low mortality. This model enabled comparison to murine BA to define etiology-specific cholestatic MΦ function. Further comparisons to human data may enable development of immune modulatory therapies to improve patient outcomes.