Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
EMBO J ; 39(15): e104054, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32311161

RESUMEN

Integral membrane proteins insert into the bacterial inner membrane co-translationally via the translocon. Transmembrane (TM) segments of nascent proteins adopt their native topological arrangement with the N-terminus of the first TM (TM1) oriented to the outside (type I) or the inside (type II) of the cell. Here, we study TM1 topogenesis during ongoing translation in a bacterial in vitro system, applying real-time FRET and protease protection assays. We find that TM1 of the type I protein LepB reaches the translocon immediately upon emerging from the ribosome. In contrast, the type II protein EmrD requires a longer nascent chain before TM1 reaches the translocon and adopts its topology by looping inside the ribosomal peptide exit tunnel. Looping presumably is mediated by interactions between positive charges at the N-terminus of TM1 and negative charges in the tunnel wall. Early TM1 inversion is abrogated by charge reversal at the N-terminus. Kinetic analysis also shows that co-translational membrane insertion of TM1 is intrinsically rapid and rate-limited by translation. Thus, the ribosome has an important role in membrane protein topogenesis.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteínas de Transporte de Membrana/biosíntesis , Biosíntesis de Proteínas , Escherichia coli/citología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/genética
2.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34162707

RESUMEN

During synthesis of membrane proteins, transmembrane segments (TMs) of nascent proteins emerging from the ribosome are inserted into the central pore of the translocon (SecYEG in bacteria) and access the phospholipid bilayer through the open lateral gate formed of two helices of SecY. Here we use single-molecule fluorescence resonance energy transfer to monitor lateral-gate fluctuations in SecYEG embedded in nanodiscs containing native membrane phospholipids. We find the lateral gate to be highly dynamic, sampling the whole range of conformations between open and closed even in the absence of ligands, and we suggest a statistical model-free approach to evaluate the ensemble dynamics. Lateral gate fluctuations take place on both short (submillisecond) and long (subsecond) timescales. Ribosome binding and TM insertion do not halt fluctuations but tend to increase sampling of the open state. When YidC, a constituent of the holotranslocon, is bound to SecYEG, TM insertion facilitates substantial opening of the gate, which may aid in the folding of YidC-dependent polytopic membrane proteins. Mutations in lateral gate residues showing in vivo phenotypes change the range of favored states, underscoring the biological significance of lateral gate fluctuations. The results suggest how rapid fluctuations of the lateral gate contribute to the biogenesis of inner-membrane proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Biosíntesis de Proteínas , Canales de Translocación SEC/metabolismo , Aminoácidos/metabolismo , Proteínas Bacterianas/química , Transferencia Resonante de Energía de Fluorescencia , Cinética , Ligandos , Modelos Biológicos , Conformación Proteica , Canales de Translocación SEC/química
3.
Biol Chem ; 401(1): 131-142, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31600135

RESUMEN

Elongation factor G (EF-G) is a translational GTPase that acts at several stages of protein synthesis. Its canonical function is to catalyze tRNA movement during translation elongation, but it also acts at the last step of translation to promote ribosome recycling. Moreover, EF-G has additional functions, such as helping the ribosome to maintain the mRNA reading frame or to slide over non-coding stretches of the mRNA. EF-G has an unconventional GTPase cycle that couples the energy of GTP hydrolysis to movement. EF-G facilitates movement in the GDP-Pi form. To convert the energy of hydrolysis to movement, it requires various ligands in the A site, such as a tRNA in translocation, an mRNA secondary structure element in ribosome sliding, or ribosome recycling factor in post-termination complex disassembly. The ligand defines the direction and timing of EF-G-facilitated motion. In this review, we summarize recent advances in understanding the mechanism of EF-G action as a remarkable force-generating GTPase.


Asunto(s)
Guanosina Trifosfato/biosíntesis , Factor G de Elongación Peptídica/genética , Biosíntesis de Proteínas/genética , Ribosomas/genética , GTP Fosfohidrolasas/genética , Guanosina Trifosfato/genética , Hidrólisis , Factor G de Elongación Peptídica/biosíntesis , ARN Mensajero/genética , ARN de Transferencia/genética
4.
Tetrahedron ; 75(24): 3216-3230, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31555018

RESUMEN

A concise 7-step total synthesis of (±)-fumimycin in 11.6 % overall yield is reported. An acid-catalyzed intramolecular aza-Friedel-Crafts cyclization was developed to construct the benzofuranone skeleton of the natural product bearing an α,α-disubstituted amino acid moiety in a single step. Regioselective chlorination followed by a Suzuki-Miyaura cross-coupling rapidly enabled the preparation of a library of analogues which were evaluated against peptide deformylase for antibacterial activity.

5.
Nucleic Acids Res ; 45(20): 11858-11866, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29149347

RESUMEN

The bacterial signal recognition particle (SRP) is part of the machinery that targets ribosomes synthesizing membrane proteins to membrane-embedded translocons co-translationally. Recognition of nascent membrane proteins occurs by virtue of a hydrophobic signal-anchor sequence (SAS) contained in the nascent chain, usually at the N terminus. Here we use fluorescence-based stopped-flow to monitor SRP-ribosome interactions with actively translating ribosomes while an SRP substrate is synthesized and emerges from the peptide exit tunnel. The kinetic analysis reveals that, at cellular concentrations of ribosomes and SRP, SRP rapidly binds to translating ribosomes prior to the emergence of an SAS and forms an initial complex that rapidly rearranges to a more stable engaged complex. When the growing peptide reaches a length of ∼50 amino acids and the SAS is partially exposed, SRP undergoes another conformational change which further stabilizes the complex and initiates targeting of the translating ribosome to the translocon. These results provide a reconciled view on the timing of high-affinity targeting complex formation, while emphasizing the existence of preceding SRP recruitment steps under conditions of ongoing translation.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Biosíntesis de Proteínas , Señales de Clasificación de Proteína , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Ribosomas/genética , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética , Factores de Tiempo
6.
EMBO J ; 33(9): 1073-85, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24614227

RESUMEN

Elongation factor G (EF-G) promotes the movement of two tRNAs and the mRNA through the ribosome in each cycle of peptide elongation. During translocation, the tRNAs transiently occupy intermediate positions on both small (30S) and large (50S) ribosomal subunits. How EF-G and GTP hydrolysis control these movements is still unclear. We used fluorescence labels that specifically monitor movements on either 30S or 50S subunits in combination with EF-G mutants and translocation-specific antibiotics to investigate timing and energetics of translocation. We show that EF-G-GTP facilitates synchronous movements of peptidyl-tRNA on the two subunits into an early post-translocation state, which resembles a chimeric state identified by structural studies. EF-G binding without GTP hydrolysis promotes only partial tRNA movement on the 50S subunit. However, rapid 30S translocation and the concomitant completion of 50S translocation require GTP hydrolysis and a functional domain 4 of EF-G. Our results reveal two distinct modes for utilizing the energy of EF-G binding and GTP hydrolysis and suggest that coupling of GTP hydrolysis to translocation is mediated through rearrangements of the 30S subunit.


Asunto(s)
Guanosina Trifosfato/metabolismo , Factor G de Elongación Peptídica/metabolismo , ARN de Transferencia/fisiología , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólisis , Cinética , Movimiento , Organismos Modificados Genéticamente , Biosíntesis de Proteínas , Transporte de ARN
7.
Mol Microbiol ; 102(1): 152-67, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27355662

RESUMEN

Proteins are inserted into the bacterial plasma membrane cotranslationally after translating ribosomes are targeted to the translocon in the membrane via the signal recognition particle (SRP) pathway. The targeting pathway involves an interaction between SRP and the SRP receptor, FtsY. Here we focus on the role of FtsY and its interaction with the translocon in controlling targeting. We show that in unbound FtsY the NG and A domains interact with one another. The interaction involves the membrane-targeting region at the junction between A and N domain. The closed form of FtsY is impaired in binding to SRP. Upon binding to the phospholipid-embedded translocon the domains of FtsY move apart. This enhances the docking of the FtsY NG domain to the homologous NG domain of the SRP protein Ffh. Thus, FtsY binding to the translocon has a central role in orchestrating the formation of a quaternary transfer complex in which the nascent peptide is transferred to the translocon. We propose that FtsY activation at the translocon ensures that ribosome-SRP complexes are directed to available translocons. This way sequestering SRP in futile complexes with unbound FtsY can be avoided and efficient targeting to the translocon achieved.


Asunto(s)
Proteínas Bacterianas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo , Relación Estructura-Actividad
8.
Nature ; 476(7360): 351-4, 2011 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-21804565

RESUMEN

The active site of the ribosome, the peptidyl transferase centre, catalyses two reactions, namely, peptide bond formation between peptidyl-tRNA and aminoacyl-tRNA as well as the release-factor-dependent hydrolysis of peptidyl-tRNA. Unlike peptide bond formation, peptide release is strongly impaired by mutations of nucleotides within the active site, in particular by base exchanges at position A2602 (refs 1, 2). The 2'-OH group of A76 of the peptidyl-tRNA substrate seems to have a key role in peptide release. According to computational analysis, the 2'-OH may take part in a concerted 'proton shuttle' by which the leaving group is protonated, in analogy to similar current models of peptide bond formation. Here we report kinetic solvent isotope effects and proton inventories (reaction rates measured in buffers with increasing content of deuterated water, D(2)O) of the two reactions catalysed by the active site of the Escherichia coli ribosome. The transition state of the release factor 2 (RF2)-dependent hydrolysis reaction is characterized by the rate-limiting formation of a single strong hydrogen bond. This finding argues against a concerted proton shuttle in the transition state of the hydrolysis reaction. In comparison, the proton inventory for peptide bond formation indicates the rate-limiting formation of three hydrogen bonds with about equal contributions, consistent with a concerted eight-membered proton shuttle in the transition state. Thus, the ribosome supports different rate-limiting transition states for the two reactions that take place in the peptidyl transferase centre.


Asunto(s)
Dominio Catalítico , Ribosomas/química , Ribosomas/metabolismo , Biocatálisis/efectos de los fármacos , Escherichia coli/química , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Hidrólisis/efectos de los fármacos , Cinética , Factores de Terminación de Péptidos/metabolismo , Protones , Puromicina/farmacología , ARN de Transferencia de Metionina/metabolismo , Ribosomas/efectos de los fármacos , Solventes/química , Especificidad por Sustrato
9.
RNA Biol ; 13(12): 1197-1203, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27801619

RESUMEN

In each round of translation elongation, tRNAs and mRNA move within the ribosome by one codon at a time. tRNA-mRNA translocation is promoted by elongation factor G (EF-G) at the cost of GTP hydrolysis. The key questions for understanding translocation are how and when the tRNAs move and how EF-G coordinates motions of the ribosomal subunits with tRNA movement. Here we present 2 recent papers which describe the choreography of movements over the whole trajectory of translocation. We present the view that EF-G accelerates translocation by promoting the steps that lead to GTPase-dependent ribosome unlocking. EF-G facilitates the formation of the rotated state of the ribosome and uncouples the backward motions of the ribosomal subunits, forming an open conformation in which the tRNAs can rapidly move. Ribosome dynamics are important not only in translocation, but also in recoding events, such as frameshifting and bypassing, and mediate sensitivity to antibiotics.


Asunto(s)
Factor G de Elongación Peptídica/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Guanosina Trifosfato/química , Hidrólisis , Modelos Moleculares , Factor G de Elongación Peptídica/química , Biosíntesis de Proteínas , ARN Mensajero/química , ARN de Transferencia/química , Ribosomas/química
10.
Nature ; 466(7304): 329-33, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20631791

RESUMEN

The translocation step of protein synthesis entails large-scale rearrangements of the ribosome-transfer RNA (tRNA) complex. Here we have followed tRNA movement through the ribosome during translocation by time-resolved single-particle electron cryomicroscopy (cryo-EM). Unbiased computational sorting of cryo-EM images yielded 50 distinct three-dimensional reconstructions, showing the tRNAs in classical, hybrid and various novel intermediate states that provide trajectories and kinetic information about tRNA movement through the ribosome. The structures indicate how tRNA movement is coupled with global and local conformational changes of the ribosome, in particular of the head and body of the small ribosomal subunit, and show that dynamic interactions between tRNAs and ribosomal residues confine the path of the tRNAs through the ribosome. The temperature dependence of ribosome dynamics reveals a surprisingly flat energy landscape of conformational variations at physiological temperature. The ribosome functions as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to directed movement.


Asunto(s)
Movimiento , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Microscopía por Crioelectrón , Escherichia coli , Cinética , Modelos Moleculares , Conformación Molecular , ARN de Transferencia/genética , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/química , Temperatura , Termodinámica , Factores de Tiempo
11.
Bioessays ; 36(10): 908-18, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25118068

RESUMEN

The translocation of tRNAs through the ribosome proceeds through numerous small steps in which tRNAs gradually shift their positions on the small and large ribosomal subunits. The most urgent questions are: (i) whether these intermediates are important; (ii) how the ribosomal translocase, the GTPase elongation factor G (EF-G), promotes directed movement; and (iii) how the energy of GTP hydrolysis is coupled to movement. In the light of recent advances in biophysical and structural studies, we argue that intermediate states of translocation are snapshots of dynamic fluctuations that guide the movement. In contrast to current models of stepwise translocation, kinetic evidence shows that the tRNAs move synchronously on the two ribosomal subunits in a rapid reaction orchestrated by EF-G and GTP hydrolysis. EF-G combines the energy regimes of a GTPase and a motor protein and facilitates tRNA movement by a combination of directed Brownian ratchet and power stroke mechanisms.


Asunto(s)
Guanosina Trifosfato/metabolismo , Factor G de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Animales , Humanos , Hidrólisis , Movimiento , Factor G de Elongación Peptídica/química
12.
Nucleic Acids Res ; 42(3): 1812-20, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24214994

RESUMEN

Protein synthesis in bacteria is terminated by release factors 1 or 2 (RF1/2), which, on recognition of a stop codon in the decoding site on the ribosome, promote the hydrolytic release of the polypeptide from the transfer RNA (tRNA). Subsequently, the dissociation of RF1/2 is accelerated by RF3, a guanosine triphosphatase (GTPase) that hydrolyzes GTP during the process. Here we show that--in contrast to a previous report--RF3 binds GTP and guanosine diphosphate (GDP) with comparable affinities. Furthermore, we find that RF3-GTP binds to the ribosome and hydrolyzes GTP independent of whether the P site contains peptidyl-tRNA (pre-termination state) or deacylated tRNA (post-termination state). RF3-GDP in either pre- or post-termination complexes readily exchanges GDP for GTP, and the exchange is accelerated when RF2 is present on the ribosome. Peptide release results in the stabilization of the RF3-GTP-ribosome complex, presumably due to the formation of the hybrid/rotated state of the ribosome, thereby promoting the dissociation of RF1/2. GTP hydrolysis by RF3 is virtually independent of the functional state of the ribosome and the presence of RF2, suggesting that RF3 acts as an unregulated ribosome-activated switch governed by its internal GTPase clock.


Asunto(s)
Guanosina Trifosfato/metabolismo , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/metabolismo , Guanosina Difosfato/metabolismo , Hidrólisis , Cinética , Ribosomas/metabolismo
13.
Angew Chem Int Ed Engl ; 55(33): 9544-7, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27346853

RESUMEN

Integral membrane proteins in bacteria are co-translationally targeted to the SecYEG translocon for membrane insertion via the signal recognition particle (SRP) pathway. The SRP receptor FtsY and its N-terminal A domain, which is lacking in any structural model of FtsY, were studied using NMR and fluorescence spectroscopy. The A domain is mainly disordered and highly flexible; it binds to lipids via its N terminus and the C-terminal membrane targeting sequence. The central A domain binds to the translocon non-specifically and maintains disorder. Translocon targeting and binding of the A domain is driven by electrostatic interactions. The intrinsically disordered A domain tethers FtsY to the translocon, and because of its flexibility, allows the FtsY NG domain to scan a large area for binding to the NG domain of ribosome-bound SRP, thereby promoting the formation of the quaternary transfer complex at the membrane.

14.
Proc Natl Acad Sci U S A ; 109(6): 2102-7, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22308410

RESUMEN

Resistance to the antibiotic fusidic acid (FA) in the human pathogen Staphylococcus aureus usually results from expression of FusB-type proteins (FusB or FusC). These proteins bind to elongation factor G (EF-G), the target of FA, and rescue translation from FA-mediated inhibition by an unknown mechanism. Here we show that the FusB family are two-domain metalloproteins, the C-terminal domain of which contains a four-cysteine zinc finger with a unique structural fold. This domain mediates a high-affinity interaction with the C-terminal domains of EF-G. By binding to EF-G on the ribosome, FusB-type proteins promote the dissociation of stalled ribosome⋅EF-G⋅GDP complexes that form in the presence of FA, thereby allowing the ribosomes to resume translation. Ribosome clearance by these proteins represents a highly unusual antibiotic resistance mechanism, which appears to be fine-tuned by the relative abundance of FusB-type protein, ribosomes, and EF-G.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Ácido Fusídico/farmacología , Ribosomas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Biológicos , Modelos Moleculares , Factor G de Elongación Peptídica/metabolismo , Unión Proteica/efectos de los fármacos , Mapas de Interacción de Proteínas , Ribosomas/efectos de los fármacos
15.
Trends Biochem Sci ; 35(1): 1-5, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19962317

RESUMEN

The award of this year's Nobel Prize in Chemistry to Ada E. Yonath, Venkatraman Ramakrishnan and Thomas A. Steitz honors their breakthrough achievement in determining the atomic structure of the ribosome.


Asunto(s)
Química/historia , Premio Nobel , Ribosomas/química , Archaea/química , Archaea/citología , Bacterias/química , Bacterias/citología , Cristalografía por Rayos X , Células Eucariotas/química , Células Eucariotas/citología , Historia del Siglo XXI , Modelos Moleculares
16.
Methods Enzymol ; 684: 39-70, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37230593

RESUMEN

Processing of newly synthesized polypeptides is essential for protein homeostasis and cell viability. In bacteria and eukaryotic organelles, all proteins are synthesized with formylmethionine at their N-terminus. As the nascent peptide emerges from the ribosome during translation, the formyl group is removed by peptide deformylase (PDF), an enzyme that belongs to the family of ribosome-associated protein biogenesis factors (RPBs). Because PDF is essential in bacteria but not in humans (except for the PDF homolog acting in mitochondria), the bacterial enzyme is a promising antimicrobial drug target. While much of the mechanistic work on PDF was carried out using model peptides in solution, understanding the mechanism of PDF in cells and developing effective PDF inhibitors requires experiments with its native cellular substrates, i.e., ribosome-nascent chain complexes. Here, we describe protocols to purify PDF from Escherichia coli and to test its deformylation activity on the ribosome in multiple-turnover and single-round kinetic regimes as well as in binding assays. These protocols can be used to test PDF inhibitors, to study the peptide specificity of PDF and its interplay with other RPBs, as well as to compare the activity and specificity of bacterial and mitochondrial PDFs.


Asunto(s)
Péptidos , Ribosomas , Humanos , Ribosomas/metabolismo , Péptidos/química , Escherichia coli/metabolismo , N-Formilmetionina/metabolismo , Bacterias/metabolismo , Amidohidrolasas/química
17.
EMBO Rep ; 11(4): 312-6, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20224578

RESUMEN

Bacterial translation initiation factor 2 (IF2) is a GTPase that promotes the binding of the initiator fMet-tRNA(fMet) to the 30S ribosomal subunit. It is often assumed that IF2 delivers fMet-tRNA(fMet) to the ribosome in a ternary complex, IF2.GTP.fMet-tRNA(fMet). By using rapid kinetic techniques, we show here that binding of IF2.GTP to the 30S ribosomal subunit precedes and is independent of fMet-tRNA(fMet) binding. The ternary complex formed in solution by IF2.GTP and fMet-tRNA is unstable and dissociates before IF2.GTP and, subsequently, fMet-tRNA(fMet) bind to the 30S subunit. Ribosome-bound IF2 might accelerate the recruitment of fMet-tRNA(fMet) to the 30S initiation complex by providing anchoring interactions or inducing a favourable ribosome conformation. The mechanism of action of IF2 seems to be different from that of tRNA carriers such as EF-Tu, SelB and eukaryotic initiation factor 2 (eIF2), instead resembling that of eIF5B, the eukaryotic subunit association factor.


Asunto(s)
Factor 2 Procariótico de Iniciación/metabolismo , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Cinética , Modelos Biológicos
18.
Nat Struct Mol Biol ; 14(4): 318-24, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17369838

RESUMEN

During the translocation step of protein synthesis, a complex of two transfer RNAs bound to messenger RNA (tRNA-mRNA) moves through the ribosome. The reaction is promoted by an elongation factor, called EF-G in bacteria, which, powered by GTP hydrolysis, induces an open, unlocked conformation of the ribosome that allows for spontaneous tRNA-mRNA movement. Here we show that, in the absence of EF-G, there is spontaneous backward movement, or retrotranslocation, of two tRNAs bound to mRNA. Retrotranslocation is driven by the gain in affinity when a cognate E-site tRNA moves into the P site, which compensates the affinity loss accompanying the movement of peptidyl-tRNA from the P to the A site. These results lend support to the diffusion model of tRNA movement during translocation. In the cell, tRNA movement is biased in the forward direction by EF-G, which acts as a Brownian ratchet and prevents backward movement.


Asunto(s)
Escherichia coli/metabolismo , Movimiento , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Microscopía por Crioelectrón , Modelos Moleculares , Biosíntesis de Proteínas , ARN Bacteriano/ultraestructura , ARN Mensajero/ultraestructura , ARN de Transferencia/ultraestructura , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/ultraestructura
19.
Trends Biochem Sci ; 32(1): 20-6, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17157507

RESUMEN

Ribosomes are molecular machines that synthesize proteins in the cell. Recent biochemical analyses and high-resolution crystal structures of the bacterial ribosome have shown that the active site for the formation of peptide bonds--the peptidyl-transferase center--is composed solely of rRNA. Thus, the ribosome is the largest known RNA catalyst and the only natural ribozyme that has a synthetic activity. The ribosome employs entropic catalysis to accelerate peptide-bond formation by positioning substrates, reorganizing water in the active site and providing an electrostatic network that stabilizes reaction intermediates. Proton transfer during the reaction seems to be promoted by a concerted shuttle mechanism that involves ribose hydroxyl groups on the tRNA substrate.


Asunto(s)
Biosíntesis de Péptidos , ARN Ribosómico/metabolismo , Ribosomas/fisiología , Sitios de Unión , Modelos Moleculares , Peptidil Transferasas/metabolismo , ARN Catalítico/metabolismo , ARN Ribosómico 23S/metabolismo , Termodinámica
20.
Front Mol Biosci ; 9: 871121, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573737

RESUMEN

Nascent polypeptides emerging from the ribosome during translation are rapidly scanned and processed by ribosome-associated protein biogenesis factors (RPBs). RPBs cleave the N-terminal formyl and methionine groups, assist cotranslational protein folding, and sort the proteins according to their cellular destination. Ribosomes translating inner-membrane proteins are recognized and targeted to the translocon with the help of the signal recognition particle, SRP, and SRP receptor, FtsY. The growing nascent peptide is then inserted into the phospholipid bilayer at the translocon, an inner-membrane protein complex consisting of SecY, SecE, and SecG. Folding of membrane proteins requires that transmembrane helices (TMs) attain their correct topology, the soluble domains are inserted at the correct (cytoplasmic or periplasmic) side of the membrane, and - for polytopic membrane proteins - the TMs find their interaction partner TMs in the phospholipid bilayer. This review describes the recent progress in understanding how growing nascent peptides are processed and how inner-membrane proteins are targeted to the translocon and find their correct orientation at the membrane, with the focus on biophysical approaches revealing the dynamics of the process. We describe how spontaneous fluctuations of the translocon allow diffusion of TMs into the phospholipid bilayer and argue that the ribosome orchestrates cotranslational targeting not only by providing the binding platform for the RPBs or the translocon, but also by helping the nascent chains to find their correct orientation in the membrane. Finally, we present the auxiliary role of YidC as a chaperone for inner-membrane proteins. We show how biophysical approaches provide new insights into the dynamics of membrane protein biogenesis and raise new questions as to how translation modulates protein folding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA