Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
EMBO J ; 40(3): e104569, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33300180

RESUMEN

Post-transcriptional repression of gene expression by miRNAs occurs through transcript destabilization or translation inhibition. mRNA decay is known to account for most miRNA-dependent repression. However, because transcript decay occurs co-translationally, whether target translation is a requirement for miRNA-dependent transcript destabilization remains unknown. To decouple these two molecular processes, we used cytosolic long noncoding RNAs (lncRNAs) as models for endogenous transcripts that are not translated. We show that, despite interacting with the miRNA-loaded RNA-induced silencing complex, the steady-state abundance and decay rates of these transcripts are minimally affected by miRNA loss. To further validate the apparent requirement of translation for miRNA-dependent decay, we fused two lncRNA candidates to the 3'-end of a protein-coding gene reporter and found this results in their miRNA-dependent destabilization. Further analysis revealed that the few natural lncRNAs whose levels are regulated by miRNAs in mESCs tend to associate with translating ribosomes, and possibly represent misannotated micropeptides, further substantiating the necessity of target translation for miRNA-dependent transcript decay. In summary, our analyses suggest that translation is required for miRNA-dependent transcript destabilization, and demonstrate that the levels of coding and noncoding transcripts are differently affected by miRNAs.


Asunto(s)
MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero/química , ARN Mensajero/metabolismo , Animales , Fusión Artificial Génica , Línea Celular , Regulación de la Expresión Génica , Genes Reporteros , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Biosíntesis de Proteínas , Estabilidad del ARN , Ribosomas/metabolismo , Análisis de Secuencia de ARN
2.
EMBO Rep ; 23(9): e54762, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35899551

RESUMEN

MicroRNA (miRNA) loaded Argonaute (AGO) complexes regulate gene expression via direct base pairing with their mRNA targets. Previous works suggest that up to 60% of mammalian transcripts might be subject to miRNA-mediated regulation, but it remains largely unknown which fraction of these interactions are functional in a specific cellular context. Here, we integrate transcriptome data from a set of miRNA-depleted mouse embryonic stem cell (mESC) lines with published miRNA interaction predictions and AGO-binding profiles. Using this integrative approach, combined with molecular validation data, we present evidence that < 10% of expressed genes are functionally and directly regulated by miRNAs in mESCs. In addition, analyses of the stem cell-specific miR-290-295 cluster target genes identify TFAP4 as an important transcription factor for early development. The extensive datasets developed in this study will support the development of improved predictive models for miRNA-mRNA functional interactions.


Asunto(s)
MicroARNs , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Mamíferos/genética , Mamíferos/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
EMBO J ; 34(1): 115-29, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25398909

RESUMEN

The telomeric transcriptome comprises multiple long non-coding RNAs generated by transcription of linear chromosome ends. In a screening performed in Schizosaccharomyces pombe, we identified factors modulating the cellular levels of the telomeric transcriptome. Among these factors, Cay1 is the fission yeast member of the conserved family of Cactins, uncharacterized proteins crucial for cell growth and survival. In cay1∆ mutants, the cellular levels of the telomeric factor Rap1 are drastically diminished due to defects in rap1+ pre-mRNA splicing and Rap1 protein stability. cay1∆ cells accumulate histone H3 acetylated at lysine 9 at telomeres, which become transcriptionally desilenced, are over-elongated by telomerase and cause chromosomal aberrations in the cold. Overexpressing Rap1 in cay1+ deleted cells significantly reverts all telomeric defects. Additionally, cay1∆ mutants accumulate unprocessed Tf2 retrotransposon RNA through Rap1-independent mechanisms. Thus, Cay1 plays crucial roles in cells by ultimately harmonizing expression of transcripts originating from seemingly unrelated genomic loci.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Proteínas Nucleares/metabolismo , Schizosaccharomyces/metabolismo , Telómero/metabolismo , Transcripción Genética/fisiología , Aberraciones Cromosómicas , Cromosomas Fúngicos/genética , Eliminación de Gen , Proteínas Nucleares/genética , Estabilidad Proteica , Empalme del ARN/fisiología , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retroelementos/fisiología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Complejo Shelterina , Telómero/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
4.
Immunity ; 33(5): 804-16, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21093316

RESUMEN

The enteroinvasive bacterium Shigella flexneri uses multiple secreted effector proteins to downregulate interleukin-8 (IL-8) expression in infected epithelial cells. Yet, massive IL-8 secretion is observed in Shigellosis. Here we report a host mechanism of cell-cell communication that circumvents the effector proteins and strongly amplifies IL-8 expression during bacterial infection. By monitoring proinflammatory signals at the single-cell level, we found that the activation of the transcription factor NF-κB and the MAP kinases JNK, ERK, and p38 rapidly propagated from infected to uninfected adjacent cells, leading to IL-8 production by uninfected bystander cells. Bystander IL-8 production was also observed during Listeria monocytogenes and Salmonella typhimurium infection. This response could be triggered by recognition of peptidoglycan and is mediated by gap junctions. Thus, we have identified a mechanism of cell-cell communication that amplifies innate immunity against bacterial infection by rapidly spreading proinflammatory signals via gap junctions to yet uninfected cells.


Asunto(s)
Disentería Bacilar/inmunología , Inmunidad Innata , Sistema de Señalización de MAP Quinasas/inmunología , Proteínas Quinasas Activadas por Mitógenos/inmunología , FN-kappa B/inmunología , Shigella flexneri/inmunología , Células CACO-2 , Comunicación Celular/inmunología , Proliferación Celular , Disentería Bacilar/enzimología , Uniones Comunicantes/inmunología , Uniones Comunicantes/microbiología , Células HeLa , Humanos , Interleucina-8/análisis , Interleucina-8/inmunología , Listeria monocytogenes/inmunología , Listeriosis/enzimología , Listeriosis/inmunología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Peptidoglicano/inmunología , Shigella flexneri/enzimología
5.
EMBO Rep ; 17(7): 999-1012, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27154402

RESUMEN

Telomerase-mediated telomere elongation provides cell populations with the ability to proliferate indefinitely. Telomerase is capable of recognizing and extending the shortest telomeres in cells; nevertheless, how this mechanism is executed remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, shortened telomeres are highly transcribed into the evolutionarily conserved long noncoding RNA TERRA A fraction of TERRA produced upon telomere shortening is polyadenylated and largely devoid of telomeric repeats, and furthermore, telomerase physically interacts with this polyadenylated TERRA in vivo We also show that experimentally enhanced transcription of a manipulated telomere promotes its association with telomerase and concomitant elongation. Our data represent the first direct evidence that TERRA stimulates telomerase recruitment and activity at chromosome ends in an organism with human-like telomeres.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Telomerasa/metabolismo , Homeostasis del Telómero , Telómero/genética , Telómero/metabolismo , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Poli A , Unión Proteica , Acortamiento del Telómero , Transcripción Genética
6.
EMBO J ; 30(19): 4047-58, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21829167

RESUMEN

Eukaryotic up-frameshift 1 (UPF1) is a nucleic acid-dependent ATPase and 5'-to-3' helicase, best characterized for its roles in cytoplasmic RNA quality control. We previously demonstrated that human UPF1 binds to telomeres in vivo and its depletion leads to telomere instability. Here, we show that UPF1 is present at telomeres at least during S and G2/M phases and that UPF1 association with telomeres is stimulated by the phosphoinositide 3-kinase (PI3K)-related protein kinase ataxia telangiectasia mutated and Rad3-related (ATR) and by telomere elongation. UPF1 physically interacts with the telomeric factor TPP1 and with telomerase. Akin to UPF1 binding to telomeres, this latter interaction is mediated by ATR. Moreover, the ATPase activity of UPF1 is required to prevent the telomeric defects observed upon UPF1 depletion, and these defects stem predominantly from inefficient telomere leading-strand replication. Our results portray a scenario where UPF1 orchestrates crucial aspects of telomere biology, including telomere replication and telomere length homeostasis.


Asunto(s)
Telomerasa/metabolismo , Telómero/genética , Transactivadores/genética , Ciclo Celular , Línea Celular , Núcleo Celular/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Proteoma , Proteómica , ARN Helicasas , Complejo Shelterina , Telomerasa/genética , Telómero/ultraestructura , Proteínas de Unión a Telómeros
7.
Nucleic Acids Res ; 40(7): 2995-3005, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22139915

RESUMEN

Eukaryotic telomeres are transcribed into telomeric repeat-containing RNA (TERRA). Telomeric transcription has been documented in mammals, birds, zebra fish, plants and budding yeast. Here we show that the chromosome ends of Schizosaccharomyces pombe produce distinct RNA species. As with budding yeast and mammals, S. pombe contains G-rich TERRA molecules and subtelomeric RNA species transcribed in the opposite direction of TERRA (ARRET). Moreover, fission yeast chromosome ends produce two novel RNA species: C-rich telomeric repeat-containing transcripts (ARIA) and subtelomeric transcripts complementary to ARRET (αARRET). RNA polymerase II (RNAPII) associates with pombe chromosome ends in vivo and the telomeric factor Rap1 negatively regulates this association, as well as the cellular accumulation of RNA emanating from chromosome ends. We also show that the RNAPII subunit Rpb7 and the non-canonical poly(A) polymerases Cid12 and Cid14 are involved in the regulation of TERRA, ARIA, ARRET and αARRET transcripts. We confirm the evolutionary conservation of telomere transcription, and reveal intriguing similarities and differences in the composition and regulation of telomeric transcripts among model organisms.


Asunto(s)
ARN de Hongos/biosíntesis , Schizosaccharomyces/genética , Telómero/genética , Transcriptoma , Núcleo Celular/genética , Cromosomas Fúngicos/genética , Regulación Fúngica de la Expresión Génica , Poliadenilación , Polinucleotido Adenililtransferasa/metabolismo , ARN Polimerasa II/fisiología , ARN de Hongos/análisis , ARN de Hongos/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
8.
Nat Commun ; 13(1): 5892, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202814

RESUMEN

Dead End (DND1) is an RNA-binding protein essential for germline development through its role in post-transcriptional gene regulation. The molecular mechanisms behind selection and regulation of its targets are unknown. Here, we present the solution structure of DND1's tandem RNA Recognition Motifs (RRMs) bound to AU-rich RNA. The structure reveals how an NYAYUNN element is specifically recognized, reconciling seemingly contradictory sequence motifs discovered in recent genome-wide studies. RRM1 acts as a main binding platform, including atypical extensions to the canonical RRM fold. RRM2 acts cooperatively with RRM1, capping the RNA using an unusual binding pocket, leading to an unusual mode of tandem RRM-RNA recognition. We show that the consensus motif is sufficient to mediate upregulation of a reporter gene in human cells and that this process depends not only on RNA binding by the RRMs, but also on DND1's double-stranded RNA binding domain (dsRBD), which is dispensable for binding of a subset of targets in cellulo. Our results point to a model where DND1 target selection is mediated by a non-canonical mode of AU-rich RNA recognition by the tandem RRMs and a role for the dsRBD in the recruitment of effector complexes responsible for target regulation.


Asunto(s)
Motivo de Reconocimiento de ARN , ARN , Sitios de Unión , Humanos , Proteínas de Neoplasias/metabolismo , Unión Proteica , ARN/metabolismo , Motivo de Reconocimiento de ARN/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
9.
RNA ; 15(12): 2186-94, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19850908

RESUMEN

The longstanding dogma that telomeres, the heterochromatic extremities of linear eukaryotic chromosomes, are transcriptionally silent was overturned by the discovery that DNA-dependent RNA polymerase II (RNAPII) transcribes telomeric DNA into telomeric repeat-containing RNA (TERRA). Here, we show that CpG dinucleotide-rich DNA islands, shared among multiple human chromosome ends, promote transcription of TERRA molecules. TERRA promoters sustain cellular expression of reporter genes, are located immediately upstream of TERRA transcription start sites, and are bound by active RNAPII in vivo. Finally, the identified promoter CpG dinucleotides are methylated in vivo, and cytosine methylation negatively regulates TERRA abundance. The existence of subtelomeric promoters, driving TERRA transcription from independent chromosome ends, supports the idea that TERRA exerts fundamental functions in the context of telomere biology.


Asunto(s)
Islas de CpG , Telómero/genética , Transcripción Genética , Línea Celular , Metilación de ADN , Humanos , Regiones Promotoras Genéticas
10.
Nat Commun ; 10(1): 2253, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138795

RESUMEN

Telomerase negative immortal cancer cells elongate telomeres through the Alternative Lengthening of Telomeres (ALT) pathway. While sustained telomeric replicative stress is required to maintain ALT, it might also lead to cell death when excessive. Here, we show that the ATPase/translocase activity of FANCM keeps telomeric replicative stress in check specifically in ALT cells. When FANCM is depleted in ALT cells, telomeres become dysfunctional, and cells stop proliferating and die. FANCM depletion also increases ALT-associated marks and de novo synthesis of telomeric DNA. Depletion of the BLM helicase reduces the telomeric replication stress and cell proliferation defects induced by FANCM inactivation. Finally, FANCM unwinds telomeric R-loops in vitro and suppresses their accumulation in cells. Overexpression of RNaseH1 completely abolishes the replication stress remaining in cells codepleted for FANCM and BLM. Thus, FANCM allows controlled ALT activity and ALT cell proliferation by limiting the toxicity of uncontrolled BLM and telomeric R-loops.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN/genética , RecQ Helicasas/genética , Homeostasis del Telómero/genética , Telómero/metabolismo , Muerte Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , ADN Helicasas/metabolismo , Células HEK293 , Células HeLa , Humanos , RecQ Helicasas/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo
11.
Nat Struct Mol Biol ; 25(2): 147-153, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29358759

RESUMEN

The shelterin protein TRF2 assembles protective T loops at chromosome ends by stimulating intramolecular invasion of the telomeric G-rich single-stranded DNA (ssDNA) overhang into the duplex telomeric array. The other shelterin factor, TRF1, is thought to mainly facilitate telomeric dsDNA replication without directly participating in end protection. Here we show that in vitro human TRF2 stimulates invasion of G-rich TERRA-like RNA into telomeric dsDNA, leading to formation of telomeric RNA-DNA hybrids (telR loops). The N-terminal basic domain of TRF2 binds to TERRA-like RNA and enables TRF2 to promote efficient RNA invasion. TRF1, through its N-terminal acidic domain, counteracts TRF2-mediated RNA invasion but not ssDNA invasion. In vivo, when TRF1 is depleted or replaced with a variant lacking the acidic domain, TRF2 induces formation of telR loops, which in turn cause telomere loss. Hence, uncontrolled TRF2 threatens telomere integrity, and TRF1 directly supports end protection by suppressing harmful telR loops.


Asunto(s)
Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/química , Línea Celular Tumoral , ADN/química , ADN de Cadena Simple , Células HeLa , Humanos , Hibridación Fluorescente in Situ , Oligonucleótidos/química , Unión Proteica , Dominios Proteicos , ARN/metabolismo , Telómero/química
12.
Stem Cell Reports ; 10(2): 461-476, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29396181

RESUMEN

In mouse, although four Argonaute (AGO) proteins with partly overlapping functions in small-RNA pathways exist, only Ago2 deficiency causes embryonic lethality. To investigate the role of AGO2 during mouse early development, we generated Ago2-deficient mouse embryonic stem cells (mESCs) and performed a detailed characterization of their differentiation potential. Ago2 disruption caused a global reduction of microRNAs, which resulted in the misregulation of only a limited number of transcripts. We demonstrated, both in vivo and in vitro, that AGO2 is dispensable for the embryonic germ-layer formation. However, Ago2-deficient mESCs showed a specific defect during conversion into extra-embryonic endoderm cells. We proved that this defect is cell autonomous and can be rescued by both a catalytically active and an inactive Ago2, but not by Ago2 deprived of its RNA binding capacity or by Ago1 overexpression. Overall, our results suggest a role for AGO2 in stem cell differentiation.


Asunto(s)
Proteínas Argonautas/genética , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Células Madre Embrionarias de Ratones/citología , Animales , Línea Celular , Endodermo/citología , Endodermo/crecimiento & desarrollo , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica/genética , Estratos Germinativos/citología , Estratos Germinativos/crecimiento & desarrollo , Ratones , MicroARNs/genética
13.
FEBS Lett ; 589(18): 2417-23, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26213367

RESUMEN

Mpn1 is an exoribonuclease that modifies the spliceosomal small nuclear RNA (snRNA) U6 by trimming its oligouridine tail and introducing a cyclic phosphate group (>p). Mpn1 deficiency induces U6 3' end misprocessing, accelerated U6 decay and pre-mRNA splicing defects. Mutations in the human MPN1 gene are associated with the genodermatosis Clericuzio-type poikiloderma with neutropenia (PN). Here we present the deep sequencing of the >p-containing transcriptomes of mpn1Δ fission yeast and PN cells. While in yeast U6 seems to be the only substrate of Mpn1, human Mpn1 also processes U6atac snRNA. PN cells bear unstable U6atac species with aberrantly long and oligoadenylated 3' ends. Our data corroborate the link between Mpn1 and snRNA stability suggesting that PN could derive from pre-mRNA splicing aberrations.


Asunto(s)
Hidrolasas Diéster Fosfóricas/metabolismo , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/metabolismo , Secuencia de Bases , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Datos de Secuencia Molecular , Neutropenia/genética , Neutropenia/patología , Hidrolasas Diéster Fosfóricas/deficiencia , Empalme del ARN , ARN Nuclear Pequeño/genética , Análisis de Secuencia de ARN , Anomalías Cutáneas/genética , Anomalías Cutáneas/patología
14.
Nat Commun ; 5: 5220, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25330849

RESUMEN

A fraction of cancer cells maintain telomeres through the telomerase-independent, 'Alternative Lengthening of Telomeres' (ALT) pathway. ALT relies on homologous recombination (HR) between telomeric sequences; yet, what makes ALT telomeres recombinogenic remains unclear. Here we show that the RNA endonuclease RNaseH1 regulates the levels of RNA-DNA hybrids between telomeric DNA and the long noncoding RNA TERRA, and is a key mediator of telomere maintenance in ALT cells. RNaseH1 associated to telomeres specifically in ALT cells and its depletion led to telomeric hybrid accumulation, exposure of single-stranded telomeric DNA, activation of replication protein A at telomeres and abrupt telomere excision. Conversely, overexpression of RNaseH1 weakened the recombinogenic nature of ALT telomeres and led to telomere shortening. Altering cellular RNaseH1 levels did not perturb telomere homoeostasis in telomerase-positive cells. RNaseH1 maintains regulated levels of telomeric RNA-DNA hybrids at ALT telomeres to trigger HR without compromising telomere integrity too severely.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Ribonucleasa H/metabolismo , Telómero/ultraestructura , Línea Celular Tumoral , ADN/química , ADN de Cadena Simple , Endonucleasas/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Recombinación Homóloga , Humanos , Imagenología Tridimensional , Hibridación Fluorescente in Situ , Ácidos Nucleicos/química , ARN Interferente Pequeño/metabolismo , Recombinación Genética , Proteína de Replicación A/metabolismo , Telomerasa/metabolismo , Acortamiento del Telómero
15.
Cell Rep ; 2(4): 855-65, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23022480

RESUMEN

Clericuzio-type poikiloderma with neutropenia (PN) is a rare genodermatosis associated with mutations in the C16orf57 gene, which codes for the uncharacterized protein hMpn1. We show here that, in both fission yeasts and humans, Mpn1 processes the spliceosomal U6 small nuclear RNA (snRNA) posttranscriptionally. In Mpn1-deficient cells, U6 molecules carry 3' end polyuridine tails that are longer than those in normal cells and lack a terminal 2',3' cyclic phosphate group. In mpn1Δ yeast cells, U6 snRNA and U4/U6 di-small nuclear RNA protein complex levels are diminished, leading to precursor messenger RNA splicing defects, which are reverted by expression of either yeast or human Mpn1 and by overexpression of U6. Recombinant hMpn1 is a 3'-to-5' RNA exonuclease that removes uridines from U6 3' ends, generating terminal 2',3' cyclic phosphates in vitro. Finally, U6 degradation rates increase in mpn1Δ yeasts and in lymphoblasts established from individuals affected by PN. Our data indicate that Mpn1 promotes U6 stability through 3' end posttranscriptional processing and implicate altered U6 metabolism as a potential mechanism for PN pathogenesis.


Asunto(s)
Exonucleasas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , ARN Nuclear Pequeño/metabolismo , Línea Celular , Exonucleasas/deficiencia , Exonucleasas/genética , Humanos , Neutropenia/metabolismo , Neutropenia/patología , Hidrolasas Diéster Fosfóricas/genética , Empalme del ARN , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/metabolismo , Anomalías Cutáneas/metabolismo , Anomalías Cutáneas/patología
16.
Science ; 313(5792): 1441-3, 2006 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-16960007

RESUMEN

Yeast is a widely used recombinant protein expression system. We expanded its utility by engineering the yeast Pichia pastoris to secrete human glycoproteins with fully complex terminally sialylated N-glycans. After the knockout of four genes to eliminate yeast-specific glycosylation, we introduced 14 heterologous genes, allowing us to replicate the sequential steps of human glycosylation. The reported cell lines produce complex glycoproteins with greater than 90% terminal sialylation. Finally, to demonstrate the utility of these yeast strains, functional recombinant erythropoietin was produced.


Asunto(s)
Eritropoyetina/metabolismo , Pichia/genética , Ingeniería de Proteínas , Sialoglicoproteínas/biosíntesis , Animales , Línea Celular , Clonación Molecular , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Eritropoyetina/química , Eritropoyetina/genética , Vectores Genéticos , Glicosilación , Humanos , Pichia/metabolismo , Ratas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Ácidos Siálicos/metabolismo , Sialoglicoproteínas/química , Sialoglicoproteínas/genética , Transformación Genética
17.
Glycobiology ; 15(6): 615-24, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15677381

RESUMEN

Rat endomannosidase is a glycosidic enzyme that catalyzes the cleavage of di-, tri-, or tetrasaccharides (Glc(1-3)Man), from N-glycosylation intermediates with terminal glucose residues. To date it is the only characterized member of this class of endomannosidic enzymes. Although this protein has been demonstrated to localize to the Golgi lumenal membrane, the mechanism by which this occurs has not yet been determined. Using the rat endomannosidase sequence, we identified three homologs, one each in the human, mouse, and rat genomes. Alignment of the four encoded protein sequences demonstrated that the newly identified sequences are highly conserved but differed significantly at the N-terminus from the previously reported protein. In this study we have cloned two novel endomannosidase sequences from rat and human cDNA libraries, but were unable to amplify the open reading frame of the previously reported rat sequence. Analysis of the rat genome confirmed that the 59- and 39-termini of the previously reported sequence were in fact located on different chromosomes. This, in combination with our inability to amplify the previously reported sequence, indicated that the N-terminus of the rat endomannosidase sequence previously published was likely in error (a cloning artifact), and that the sequences reported in the current study encode the intact proteins. Furthermore, unlike the previous sequence, the three ORFs identified in this study encode proteins containing a single N-terminal transmembrane domain. Here we demonstrate that this region is responsible for Golgi localization and in doing so confirm that endomannosidase is a type II membrane protein, like the majority of other secretory pathway glycosylation enzymes.


Asunto(s)
Manosidasas/genética , Proteínas de la Membrana/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , Regulación Enzimológica de la Expresión Génica , Vectores Genéticos/genética , Humanos , Manosidasas/biosíntesis , Manosidasas/clasificación , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/clasificación , Ratones , Datos de Secuencia Molecular , Pichia/genética , Ratas , Alineación de Secuencia
18.
Science ; 301(5637): 1244-6, 2003 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-12947202

RESUMEN

We report the humanization of the glycosylation pathway in the yeast Pichia pastoris to secrete a human glycoprotein with uniform complex N-glycosylation. The process involved eliminating endogenous yeast glycosylation pathways, while properly localizing five active eukaryotic proteins, including mannosidases I and II, N-acetylglucosaminyl transferases I and II, and uridine 5'-diphosphate (UDP)-N-acetylglucosamine transporter. Targeted localization of the enzymes enabled the generation of a synthetic in vivo glycosylation pathway, which produced the complex human N-glycan N-acetylglucosamine2-mannose3-N-acetylglucosamine2 (GlcNAc2Man3GlcNAc2). The ability to generate human glycoproteins with homogeneous N-glycan structures in a fungal host is a step toward producing therapeutic glycoproteins and could become a tool for elucidating the structure-function relation of glycoproteins.


Asunto(s)
Ingeniería Genética , Glicoproteínas/biosíntesis , Manosidasas/genética , Pichia/genética , Polisacáridos/metabolismo , Proteínas Recombinantes/biosíntesis , Animales , Dominio Catalítico , Retículo Endoplásmico/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Manosidasas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Biblioteca de Péptidos , Pichia/enzimología , Pichia/metabolismo , Polisacáridos/química , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA