Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34575873

RESUMEN

Sjögren's syndrome (SjS) is a chronic autoimmune disease primarily involving the exocrine glands in which the involvement of the innate immune system is largely uncharacterized. Mer signaling has been found to be protective in several autoimmune diseases but remains unstudied in SjS. Here, we investigated the role of Mer signaling in SjS. Mer knockout (MerKO) mice were examined for SjS disease criteria. SjS-susceptible (SjSS) C57BL/6.NOD-Aec1Aec2 mice were assessed for defective Mer signaling outcomes, soluble Mer (sMer) levels, A disintegrin and metalloprotease 17 (ADAM17) activity, and Rac1 activation. In addition, SjS patient plasma samples were evaluated for sMer levels via ELISA, and sMer levels were correlated to disease manifestations. MerKO mice developed submandibular gland (SMG) lymphocytic infiltrates, SMG apoptotic cells, anti-nuclear autoantibodies (ANA), and reduced saliva flow. Mer signaling outcomes were observed to be diminished in SjSS mice, as evidenced by reduced Rac1 activation in SjSS mice macrophages in response to apoptotic cells and impaired efferocytosis. Increased sMer was also detected in SjSS mouse sera, coinciding with higher ADAM17 activity, the enzyme responsible for cleavage and inactivation of Mer. sMer levels were elevated in patient plasma and positively correlated with focus scores, ocular staining scores, rheumatoid factors, and anti-Ro60 levels. Our data indicate that Mer plays a protective role in SjS, similar to other autoimmune diseases. Furthermore, we suggest a series of events where enhanced ADAM17 activity increases Mer inactivation and depresses Mer signaling, thus removing protection against the loss of self-tolerance and the onset of autoimmune disease in SjSS mice.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Síndrome de Sjögren/inmunología , Síndrome de Sjögren/metabolismo , Tirosina Quinasa c-Mer/genética , Proteína ADAM17/metabolismo , Animales , Anticuerpos Antinucleares/química , Apoptosis , Autoanticuerpos/metabolismo , Autoinmunidad , Modelos Animales de Enfermedad , Femenino , Humanos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Fenotipo , Saliva/metabolismo , Transducción de Señal , Timocitos/metabolismo
2.
Adv Exp Med Biol ; 1255: 29-50, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32949388

RESUMEN

T cells recognize peptides bound to major histocompatibility complex (MHC) class I and class II molecules at the cell surface. This recognition is accomplished by the expression of T cell receptors (TCR) which are required to be diverse and adaptable in order to accommodate the various and vast number of antigens presented on the MHCs. Thus, determining TCR repertoires of effector T cells is necessary to understand the immunological process in responding to cancer progression, infection, and autoimmune development. Furthermore, understanding the TCR repertoires will provide a solid framework to predict and test the antigen which is more critical in autoimmunity. However, it has been a technical challenge to sequence the TCRs and provide a conceptual context in correlation to the vast number of TCR repertoires in the immunological system. The exploding field of single-cell sequencing has changed how the repertoires are being investigated and analyzed. In this review, we focus on the biology of TCRs, TCR signaling and its implication in autoimmunity. We discuss important methods in bulk sequencing of many cells. Lastly, we explore the most pertinent platforms in single-cell sequencing and its application in autoimmunity.


Asunto(s)
Receptores de Antígenos de Linfocitos T/genética , Análisis de Secuencia , Análisis de la Célula Individual , Animales , Autoinmunidad/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo
3.
Hum Mol Genet ; 26(20): 3973-3988, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29016855

RESUMEN

Accumulation of amyloid ß (Aß) and tau represent the two major pathological hallmarks of Alzheimer's disease (AD). Despite the critical importance of Aß accumulation as an early event in AD pathogenesis, multiple lines of evidence indicate that tau is required to mediate Aß-induced neurotoxic signals in neurons. We have previously shown that the scaffolding protein Ran-binding protein 9 (RanBP9), which is highly elevated in brains of AD and AD mouse models, both enhances Aß production and mediates Aß-induced neurotoxicity. However, it is unknown whether and how RanBP9 transmits Aß-induced neurotoxic signals to tau. Here we show for the first time that overexpression or knockdown of RanBP9 directly enhances and reduces tau levels, respectively, in vitro and in vivo. Such changes in tau levels are associated with the ability of RanBP9 to physically interact with tau and heat shock protein 90/heat shock cognate 70 (Hsp90/Hsc70) complexes. Meanwhile, both RanBP9 and tau levels are simultaneously reduced by Hsp90 or Hsc70 inhibitors, whereas overexpression or knockdown of RanBP9 significantly diminishes the anti-tau potency of Hsp90/Hsc70 inhibitors as well as Hsc70 variants (WT & E175S). Further, RanBP9 increases the capacity for Hsp90 and Hsc70 complexes to bind ATP and enhances their ATPase activities in vitro. These observations in vitro and cell lines are recapitulated in primary neurons and in vivo, as genetic reduction in RanBP9 not only ameliorates tauopathy in Tau-P301S mice but also rescues the deficits in synaptic integrity and plasticity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Nucleares/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Células Cultivadas , Células HeLa , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Tauopatías/metabolismo
4.
Sci Rep ; 12(1): 8593, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35597820

RESUMEN

Sjögren's syndrome (SjS) is a female-dominated autoimmune disease involving lymphocytic infiltration of the exocrine glands. We have previously demonstrated cleavage of the TAM (Tyro3, Axl, Mer) receptor Mer is enhanced in SjS, leading to defective efferocytosis. Mer also plays a role in modulating phagocyte inflammatory response to apoptotic cells. Here we investigated the SjS macrophage response to apoptotic cells (AC). Bone marrow-derived macrophages (BMDMs) from SjS-susceptible (SjSs) C57BL/6.NOD-Aec1Aec2 mice and C57BL/6 (B6) controls were treated with either AC or CpG-oligodeoxynucleotides. RNA was collected from macrophages and bulk sequencing was performed to analyze transcripts. Cytokine expression was confirmed by Bio-plex. RT-qPCR was used to determine toll-like receptor (TLR) 7 and 9 involvement in BMDM inflammatory response to apoptotic cells. SjSS BMDMs exhibited a distinct transcriptional profile involving upregulation of a broad array of inflammatory genes that were not elevated in B6 BMDMs by AC. Inhibition of TLR 7 and 9 was found to limit the inflammatory response of SjSS BMDMs to ACs. ACs elicit an inflammatory reaction in SjSS BMDMs distinct from that observed in B6 BMDMs. This discovery of aberrant macrophage behavior in SjS in conjunction with previously described efferocytosis defects suggests an expanded role for macrophages in SjS, where uncleared dead cells stimulate an inflammatory response through macrophage TLRs recruiting lymphocytes, participating in co-stimulation and establishing an environment conducive to autoimmunity.


Asunto(s)
Síndrome de Sjögren , Animales , Apoptosis , Modelos Animales de Enfermedad , Femenino , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD
5.
Front Aging Neurosci ; 14: 933979, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092812

RESUMEN

Increasing evidence indicates that the accumulation misfolded proteins in Alzheimer's disease (AD) arises from clearance defects in the autophagy-lysosome pathway. Misfolded proteins such as Aß and tau are secreted in small extracellular vesicles (i.e., exosomes) and are propagated from cell to cell in part through secreted small extracellular vesicles (sEVs). Recent studies suggest that autophagic activity and exosome secretion are coregulated events, and multiple autophagy-related proteins are found in sEVs, including the cargo receptors Sqstm1/p62 and optineurin. However, whether and how autophagy cargo receptors per se regulate the secretion of sEVs is unknown. Moreover, despite the prominent role of actin dynamics in secretory vesicle release, its role in EV secretion is unknown. In this study, we leveraged the dual axes of Slingshot Homolog-1 (SSH1), which inhibits Sqstm1/p62-mediated autophagy and activates cofilin-mediated actin dynamics, to study the regulation of sEV secretion. Here we show that cargo receptors Sqstm1/p62 and optineurin inhibit sEV secretion, an activity that requires their ability to bind ubiquitinated cargo. Conversely, SSH1 increases sEV secretion by dephosphorylating Sqstm1/p62 at pSer403, the phospho-residue that allows Sqstm1/p62 to bind ubiquitinated cargo. In addition, increasing actin dynamics through the SSH1-cofilin activation pathway also increases sEV secretion, which is mimicked by latrunculin B treatment. Finally, Aß42 oligomers and mutant tau increase sEV secretion and are physically associated with secreted sEVs. These findings suggest that increasing cargo receptor engagement with autophagic cargo and reducing actin dynamics (i.e., SSH1 inhibition) represents an attractive strategy to promote misfolded protein degradation while reducing sEV-mediated cell to cell spread of pathology.

6.
J Clin Med ; 9(9)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971904

RESUMEN

Sjögren's syndrome (SS) is a female dominated autoimmune disease characterized by lymphocytic infiltration into salivary and lacrimal glands and subsequent exocrine glandular dysfunction. SS also may exhibit a broad array of extraglandular manifestations including an elevated incidence of non-Hodgkin's B cell lymphoma. The etiology of SS remains poorly understood, yet progress has been made in identifying progressive stages of disease using preclinical mouse models. The roles played by immune cell subtypes within these stages of disease are becoming increasingly well understood, though significant gaps in knowledge still remain. There is evidence for distinct involvement from both innate and adaptive immune cells, where cells of the innate immune system establish a proinflammatory environment characterized by a type I interferon (IFN) signature that facilitates propagation of the disease by further activating T and B cell subsets to generate autoantibodies and participate in glandular destruction. This review will discuss the evidence for participation in disease pathogenesis by various classes of immune cells and glandular epithelial cells based upon data from both preclinical mouse models and human patients. Further examination of the contributions of glandular and immune cell subtypes to SS will be necessary to identify additional therapeutic targets that may lead to better management of the disease.

7.
J Immunol Res ; 2019: 4813795, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214622

RESUMEN

Sjogren's syndrome (SS) is a chronic, progressive autoimmune disease featuring both organ-specific and systemic manifestations, the most frequent being dry mouth and dry eyes resulting from lymphocytic infiltration into the salivary and lacrimal glands. Like the related autoimmune disease systemic lupus erythematosus (SLE), SS patients and mouse models display accumulation of apoptotic cells and a Type I interferon (IFN) signature. Receptor tyrosine kinases (RTKs) of the Tyro3, Axl, and Mer (TAM) family are present on the surface of macrophages and dendritic cells and participate in phagocytosis of apoptotic cells (efferocytosis) and inhibition of Type I IFN signaling. This review examines the relationship between TAM receptor dysfunction and SS and explores the potential contributions of TAM defects on macrophages to SS development.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras/metabolismo , Síndrome de Sjögren/etiología , Síndrome de Sjögren/metabolismo , Animales , Apoptosis , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Transgénicos , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa del Receptor Axl
8.
Methods Mol Biol ; 1598: 255-267, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28508366

RESUMEN

Exosomes and microvesicles are extracellular vesicles (EVs) released by most cell types. The role of EVs as a method of intercellular communication has led to these vesicles becoming a major area of interest in a variety of scientific fields including neuroscience. Emerging evidence is now demonstrating that the biomolecular composition of EVs, especially exosomes, can play a role in the progression of disease including various neurodegenerative diseases and cancer. In addition to the miRNA profiles of EVs, these vesicles also show interesting changes in protein expression profiles under different physiological and pathological conditions. Characterization of these profiles could prove valuable for both understanding disease pathogenesis and for the discovery of new biomarkers of disease. In this chapter, we describe a protocol for isolation of exosomes and microvesicles from immortalized HT22 cells and primary cortical neurons with sufficient yield and low serum contamination required for downstream analysis and label-free relative quantitation by mass spectrometry.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Exosomas/metabolismo , Neuronas/metabolismo , Proteoma , Proteómica , Animales , Fraccionamiento Celular , Línea Celular Transformada , Cromatografía Liquida , Interpretación Estadística de Datos , Bases de Datos de Proteínas , Espectrometría de Masas , Ratones , Proteómica/métodos , Células Piramidales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA