Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Development ; 150(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37800308

RESUMEN

Actin-related proteins (Arps) are classified according to their similarity to actin and are involved in diverse cellular processes. ACTL7B is a testis-specific Arp, and is highly conserved in rodents and primates. ACTL7B is specifically expressed in round and elongating spermatids during spermiogenesis. Here, we have generated an Actl7b-null allele in mice to unravel the role of ACTL7B in sperm formation. Male mice homozygous for the Actl7b-null allele (Actl7b-/-) were infertile, whereas heterozygous males (Actl7b+/-) were fertile. Severe spermatid defects, such as detached acrosomes, disrupted membranes and flagella malformations start to appear after spermiogenesis step 9 in Actl7b-/- mice, finally resulting in spermatogenic arrest. Abnormal spermatids were degraded and levels of autophagy markers were increased. Co-immunoprecipitation with mass spectrometry experiments identified an interaction between ACTL7B and the LC8 dynein light chains DYNLL1 and DYNLL2, which are first detected in step 9 spermatids and mislocalized when ACTL7B is absent. Our data unequivocally establish that mutations in ACTL7B are directly related to male infertility, pressing for additional research in humans.


Asunto(s)
Actinas , Dineínas , Animales , Humanos , Masculino , Ratones , Actinas/metabolismo , Dineínas Citoplasmáticas/metabolismo , Dineínas/genética , Dineínas/metabolismo , Semen/metabolismo , Espermátides/metabolismo , Espermatogénesis/genética , Espermatozoides/metabolismo , Testículo/metabolismo
2.
Cell ; 134(6): 1042-54, 2008 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-18805096

RESUMEN

Strong evidence indicates that regulated mRNA translation in neuronal dendrites underlies synaptic plasticity and brain development. The fragile X mental retardation protein (FMRP) is involved in this process; here, we show that it acts by inhibiting translation initiation. A binding partner of FMRP, CYFIP1/Sra1, directly binds the translation initiation factor eIF4E through a domain that is structurally related to those present in 4E-BP translational inhibitors. Brain cytoplasmic RNA 1 (BC1), another FMRP binding partner, increases the affinity of FMRP for the CYFIP1-eIF4E complex in the brain. Levels of proteins encoded by known FMRP target mRNAs are increased upon reduction of CYFIP1 in neurons. Translational repression is regulated in an activity-dependent manner because BDNF or DHPG stimulation of neurons causes CYFIP1 to dissociate from eIF4E at synapses, thereby resulting in protein synthesis. Thus, the translational repression activity of FMRP in the brain is mediated, at least in part, by CYFIP1.


Asunto(s)
Encéfalo/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Biosíntesis de Proteínas , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Encéfalo/embriología , Células Cultivadas , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/química , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Alineación de Secuencia , Sinapsis
3.
J Cell Sci ; 133(5)2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31974112

RESUMEN

Actin dynamics is essential for T-cell development. We show here that cofilin1 is the key molecule for controlling actin filament turnover in this process. Mice with specific depletion of cofilin1 in thymocytes showed increased steady-state levels of actin filaments, and associated alterations in the pattern of thymocyte migration and adhesion. Our data suggest that cofilin1 is controlling oscillatory F-actin changes, a parameter that influences the migration pattern in a 3-D environment. In a collagen matrix, cofilin1 controls the speed and resting intervals of migrating thymocytes. Cofilin1 was not involved in thymocyte proliferation, cell survival, apoptosis or surface receptor trafficking. However, in cofilin1 mutant mice, impaired adhesion and migration resulted in a specific block of thymocyte differentiation from CD4/CD8 double-positive thymocytes towards CD4 and CD8 single-positive cells. Our data suggest that tuning of the dwelling time of thymocytes in the thymic niches is tightly controlled by cofilin1 and essential for positive selection during T-cell differentiation. We describe a novel role of cofilin1 in the physiological context of migration-dependent cell differentiation.


Asunto(s)
Actinas , Timocitos , Actinas/genética , Animales , Linfocitos T CD8-positivos , Diferenciación Celular , Movimiento Celular , Cofilina 1 , Ratones
4.
J Cell Sci ; 131(16)2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30072444

RESUMEN

The role of the actin cytoskeleton in the sequence of physiological epithelial repair in the intact epithelium has yet to be elucidated. Here, we explore the role of actin in gastric repair in vivo and in vitro gastric organoids (gastroids). In response to two-photon-induced cellular damage of either an in vivo gastric or in vitro gastroid epithelium, actin redistribution specifically occurred in the lateral membranes of cells neighboring the damaged cell. This was followed by their migration inward to close the gap at the basal pole of the dead cell, in parallel with exfoliation of the dead cell into the lumen. The repair and focal increase of actin was significantly blocked by treatment with EDTA or the inhibition of actin polymerization. Treatment with inhibitors of myosin light chain kinase, myosin II, trefoil factor 2 signaling or phospholipase C slowed both the initial actin redistribution and the repair. While Rac1 inhibition facilitated repair, inhibition of RhoA/Rho-associated protein kinase inhibited it. Inhibitors of focal adhesion kinase and Cdc42 had negligible effects. Hence, initial actin polymerization occurs in the lateral membrane, and is primarily important to initiate dead cell exfoliation and cell migration to close the gap.


Asunto(s)
Actinas/metabolismo , Mucosa Gástrica/lesiones , Organoides/lesiones , Multimerización de Proteína/fisiología , Repitelización/fisiología , Estómago/citología , Animales , Movimiento Celular , Células Cultivadas , Células Epiteliales/fisiología , Femenino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/fisiología , Masculino , Ratones , Ratones Transgénicos , Organoides/citología , Organoides/fisiología , Polimerizacion , Regeneración/fisiología , Estómago/lesiones
5.
Blood ; 130(17): 1934-1945, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-28774878

RESUMEN

Cellular iron homeostasis is controlled by the iron regulatory proteins (IRPs) 1 and 2 that bind cis-regulatory iron-responsive elements (IRE) on target messenger RNAs (mRNA). We identified profilin 2 (Pfn2) mRNA, which encodes an actin-binding protein involved in endocytosis and neurotransmitter release, as a novel IRP-interacting transcript, and studied its role in iron metabolism. A combination of electrophoretic mobility shift assay experiments and bioinformatic analyses led to the identification of an atypical and conserved IRE in the 3' untranslated region of Pfn2 mRNA. Pfn2 mRNA levels were significantly reduced in duodenal samples from mice with intestinal IRP ablation, suggesting that IRPs exert a positive effect on Pfn2 mRNA expression in vivo. Overexpression of Pfn2 in HeLa and Hepa1-6 cells reduced their metabolically active iron pool. Importantly, Pfn2-deficient mice showed iron accumulation in discrete areas of the brain (olfactory bulb, hippocampus, and midbrain) and reduction of the hepatic iron store without anemia. Despite low liver iron levels, hepatic hepcidin expression remained high, likely because of compensatory activation of hepcidin by mild inflammation. Splenic ferroportin was increased probably to sustain hematopoiesis. Overall, our results indicate that Pfn2 expression is controlled by the IRPs in vivo and that Pfn2 contributes to maintaining iron homeostasis in cell lines and mice.


Asunto(s)
Homeostasis , Hierro/metabolismo , Profilinas/metabolismo , Regiones no Traducidas 3'/genética , Animales , Secuencia de Bases , Línea Celular , Duodeno/metabolismo , Células HeLa , Humanos , Proteínas Reguladoras del Hierro/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Especificidad de Órganos , Profilinas/genética , Unión Proteica/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Elementos de Respuesta/genética
6.
J Cell Sci ; 128(14): 2468-81, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26040287

RESUMEN

The cytoskeleton is widely considered essential for neurulation, yet the mouse spinal neural tube can close despite genetic and non-genetic disruption of the cytoskeleton. To investigate this apparent contradiction, we applied cytoskeletal inhibitors to mouse embryos in culture. Preventing actomyosin cross-linking, F-actin assembly or myosin II contractile activity did not disrupt spinal closure. In contrast, inhibiting Rho kinase (ROCK, for which there are two isoforms ROCK1 and ROCK2) or blocking F-actin disassembly prevented closure, with apical F-actin accumulation and adherens junction disturbance in the neuroepithelium. Cofilin-1-null embryos yielded a similar phenotype, supporting the hypothesis that there is a key role for actin turnover. Co-exposure to Blebbistatin rescued the neurulation defects caused by RhoA inhibition, whereas an inhibitor of myosin light chain kinase, ML-7, had no such effect. We conclude that regulation of RhoA, Rho kinase, LIM kinase and cofilin signalling is necessary for spinal neural tube closure through precise control of neuroepithelial actin turnover and actomyosin disassembly. In contrast, actomyosin assembly and myosin ATPase activity are not limiting for closure.


Asunto(s)
Actinas/metabolismo , Actomiosina/metabolismo , Tubo Neural/embriología , Quinasas Asociadas a rho/metabolismo , Actinas/genética , Actomiosina/genética , Animales , Cofilina 1/genética , Cofilina 1/metabolismo , Quinasas Lim/genética , Quinasas Lim/metabolismo , Ratones , Ratones Mutantes , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/genética , Proteína de Unión al GTP rhoA
7.
Blood ; 125(26): 4069-77, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-25795918

RESUMEN

Platelet aggregation at sites of vascular injury is not only essential for hemostasis, but may also cause acute ischemic disease states such as myocardial infarction or stroke. The hemi-immunoreceptor tyrosine-based activation motif-containing C-type lectinlike receptor 2 (CLEC-2) mediates powerful platelet activation through a Src- and spleen tyrosine kinase (Syk)-dependent tyrosine phosphorylation cascade. Thereby, CLEC-2 not only contributes to thrombus formation and stabilization but also plays a central role in blood-lymphatic vessel development, tumor metastasis, and prevention of inflammatory bleeding, making it a potential pharmacologic target to modulate these processes. We have previously shown that injection of the anti-CLEC-2 antibody, INU1, results in virtually complete immunodepletion of platelet CLEC-2 in mice, which is, however, preceded by a severe transient thrombocytopenia thereby limiting its potential therapeutic use. The mechanisms underlying this targeted CLEC-2 downregulation have remained elusive. Here, we show that INU1-induced CLEC-2 immunodepletion occurs through Src-family kinase-dependent receptor internalization in vitro and in vivo, presumably followed by intracellular degradation. In mice with platelet-specific Syk deficiency, INU1-induced CLEC-2 internalization/degradation was fully preserved whereas the associated thrombocytopenia was largely prevented. These results show for the first time that CLEC-2 can be downregulated from the platelet surface through internalization in vitro and in vivo and that this can be mechanistically uncoupled from the associated antibody-induced thrombocytopenia.


Asunto(s)
Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Activación Plaquetaria/fisiología , Animales , Anticuerpos Monoclonales/farmacología , Western Blotting , Regulación hacia Abajo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Tirosina Quinasas/metabolismo , Quinasa Syk , Trombocitopenia/inducido químicamente
8.
Cereb Cortex ; 25(9): 2863-75, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24770705

RESUMEN

Actin is a regulator of synaptic vesicle mobilization and exocytosis, but little is known about the mechanisms that regulate actin at presynaptic terminals. Genetic data on LIMK1, a negative regulator of actin-depolymerizing proteins of the ADF/cofilin family, suggest a role for ADF/cofilin in presynaptic function. However, synapse physiology is fully preserved upon genetic ablation of ADF in mice, and n-cofilin mutant mice display defects in postsynaptic plasticity, but not in presynaptic function. One explanation for this phenomenon is overlapping functions of ADF and n-cofilin in presynaptic physiology. Here, we tested this hypothesis and genetically removed ADF together with n-cofilin from synapses. In double mutants for ADF and n-cofilin, synaptic actin dynamics was impaired and more severely affected than in single mutants. The resulting cytoskeletal defects heavily affected the organization, mobilization, and exocytosis of synaptic vesicles in hippocampal CA3-CA1 synapses. Our data for the first time identify overlapping functions for ADF and n-cofilin in presynaptic physiology and vesicle trafficking. We conclude that n-cofilin is a limiting factor in postsynaptic plasticity, a function which cannot be substituted by ADF. On the presynaptic side, the presence of either ADF or n-cofilin is sufficient to control actin remodeling during vesicle release.


Asunto(s)
Actinas/metabolismo , Cofilina 1/metabolismo , Destrina/metabolismo , Exocitosis/fisiología , Transporte de Proteínas/fisiología , Sinapsis/fisiología , Vesículas Sinápticas/metabolismo , Animales , Cofilina 1/genética , Destrina/genética , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Exocitosis/efectos de los fármacos , Exocitosis/genética , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Transgénicos , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuronas/ultraestructura , Fosforilación , Cloruro de Potasio/farmacología , Prosencéfalo/citología , Transporte de Proteínas/genética , Proteínas SNARE/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura
9.
PLoS Genet ; 8(10): e1002970, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23055942

RESUMEN

The genes involved in conferring susceptibility to anxiety remain obscure. We developed a new method to identify genes at quantitative trait loci (QTLs) in a population of heterogeneous stock mice descended from known progenitor strains. QTLs were partitioned into intervals that can be summarized by a single phylogenetic tree among progenitors and intervals tested for consistency with alleles influencing anxiety at each QTL. By searching for common Gene Ontology functions in candidate genes positioned within those intervals, we identified actin depolymerizing factors (ADFs), including cofilin-1 (Cfl1), as genes involved in regulating anxiety in mice. There was no enrichment for function in the totality of genes under each QTL, indicating the importance of phylogenetic filtering. We confirmed experimentally that forebrain-specific inactivation of Cfl1 decreased anxiety in knockout mice. Our results indicate that similarity of function of mammalian genes can be used to recognize key genetic regulators of anxiety and potentially of other emotional behaviours.


Asunto(s)
Ansiedad/genética , Cofilina 1/genética , Animales , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Noqueados , Anotación de Secuencia Molecular , Mutación , Filogenia , Prosencéfalo/metabolismo , Sitios de Carácter Cuantitativo
10.
EMBO J ; 29(11): 1889-902, 2010 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-20407421

RESUMEN

Neuronal plasticity is an important process for learning, memory and complex behaviour. Rapid remodelling of the actin cytoskeleton in the postsynaptic compartment is thought to have an important function for synaptic plasticity. However, the actin-binding proteins involved and the molecular mechanisms that in vivo link actin dynamics to postsynaptic physiology are not well understood. Here, we show that the actin filament depolymerizing protein n-cofilin is controlling dendritic spine morphology and postsynaptic parameters such as late long-term potentiation and long-term depression. Loss of n-cofilin-mediated synaptic actin dynamics in the forebrain specifically leads to impairment of all types of associative learning, whereas exploratory learning is not affected. We provide evidence for a novel function of n-cofilin function in synaptic plasticity and in the control of extrasynaptic excitatory AMPA receptors diffusion. These results suggest a critical function of actin dynamics in associative learning and postsynaptic receptor availability.


Asunto(s)
Actinas/fisiología , Cofilina 1/metabolismo , Aprendizaje , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/fisiología , Potenciación a Largo Plazo/fisiología , Memoria , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo
12.
EMBO Rep ; 13(1): 75-82, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22081137

RESUMEN

Cerebellar granule neurons (CGNs) exploit Bergmann glia (BG) fibres for radial migration, and cell-cell contacts have a pivotal role in this process. Nevertheless, little is known about the mechanisms that control CGN-BG interaction. Here we demonstrate that the actin-binding protein profilin1 is essential for CGN-glial cell adhesion and radial migration. Profilin1 ablation from mouse brains leads to a cerebellar hypoplasia, aberrant organization of cerebellar cortex layers and ectopic CGNs. Conversely, neuronal progenitor proliferation, tangential migration of neurons and BG morphology appear to be independent of profilin1. Our mouse data and the mapping of developmental neuropathies to the chromosomal region of PFN1 suggest a similar function for profilin1 in humans.


Asunto(s)
Movimiento Celular , Cerebelo/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Profilinas/metabolismo , Animales , Axones/metabolismo , Adhesión Celular/genética , Diferenciación Celular , Movimiento Celular/genética , Cerebelo/patología , Hiperplasia/genética , Ratones , Ratones Transgénicos , Mutación , Neuronas/citología , Profilinas/genética
13.
PLoS Genet ; 6(10): e1001176, 2010 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21060807

RESUMEN

The actin depolymerizing factors (ADFs) play important roles in several cellular processes that require cytoskeletal rearrangements, such as cell migration, but little is known about the in vivo functions of ADFs in developmental events like branching morphogenesis. While the molecular control of ureteric bud (UB) branching during kidney development has been extensively studied, the detailed cellular events underlying this process remain poorly understood. To gain insight into the role of actin cytoskeletal dynamics during renal branching morphogenesis, we studied the functional requirements for the closely related ADFs cofilin1 (Cfl1) and destrin (Dstn) during mouse development. Either deletion of Cfl1 in UB epithelium or an inactivating mutation in Dstn has no effect on renal morphogenesis, but simultaneous lack of both genes arrests branching morphogenesis at an early stage, revealing considerable functional overlap between cofilin1 and destrin. Lack of Cfl1 and Dstn in the UB causes accumulation of filamentous actin, disruption of normal epithelial organization, and defects in cell migration. Animals with less severe combinations of mutant Cfl1 and Dstn alleles, which retain one wild-type Cfl1 or Dstn allele, display abnormalities including ureter duplication, renal hypoplasia, and abnormal kidney shape. The results indicate that ADF activity, provided by either cofilin1 or destrin, is essential in UB epithelial cells for normal growth and branching.


Asunto(s)
Cofilina 1/metabolismo , Destrina/metabolismo , Morfogénesis , Uréter/metabolismo , Actinas/metabolismo , Animales , Movimiento Celular , Cofilina 1/genética , Destrina/genética , Células Epiteliales/metabolismo , Epitelio/embriología , Epitelio/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Genotipo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Hibridación in Situ , Riñón/efectos de los fármacos , Riñón/embriología , Riñón/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Uréter/efectos de los fármacos , Uréter/embriología
14.
Blood ; 116(10): 1767-75, 2010 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-20530287

RESUMEN

The cellular and molecular mechanisms orchestrating the complex process by which bone marrow megakaryocytes form and release platelets remain poorly understood. Mature megakaryocytes generate long cytoplasmic extensions, proplatelets, which have the capacity to generate platelets. Although microtubules are the main structural component of proplatelets and microtubule sliding is known to drive proplatelet elongation, the role of actin dynamics in the process of platelet formation has remained elusive. Here, we tailored a mouse model lacking all ADF/n-cofilin-mediated actin dynamics in megakaryocytes to specifically elucidate the role of actin filament turnover in platelet formation. We demonstrate, for the first time, that in vivo actin filament turnover plays a critical role in the late stages of platelet formation from megakaryocytes and the proper sizing of platelets in the periphery. Our results provide the genetic proof that platelet production from megakaryocytes strictly requires dynamic changes in the actin cytoskeleton.


Asunto(s)
Actinas/metabolismo , Plaquetas/metabolismo , Cofilina 1/metabolismo , Destrina/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Animales , Plaquetas/citología , Plaquetas/ultraestructura , Western Blotting , Forma de la Célula , Tamaño de la Célula , Supervivencia Celular , Cofilina 1/genética , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Destrina/genética , Fibrinógeno/metabolismo , Megacariocitos/citología , Megacariocitos/metabolismo , Megacariocitos/ultraestructura , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Recuento de Plaquetas , Esplenomegalia/genética , Esplenomegalia/metabolismo , Esplenomegalia/patología , Trombina/farmacología , Factores de Tiempo
15.
Haematologica ; 97(7): 980-8, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22271892

RESUMEN

BACKGROUND: During late differentiation, erythroid cells undergo profound changes involving actin filament remodeling. One of the proteins controlling actin dynamics is gelsolin, a calcium-activated actin filament severing and capping protein. Gelsolin-null (Gsn(-/-)) mice generated in a C57BL/6 background are viable and fertile.1 DESIGN AND METHODS: We analyzed the functional roles of gelsolin in erythropoiesis by: (i) evaluating gelsolin expression in murine fetal liver cells at different stages of erythroid differentiation (using reverse transcription polymerase chain reaction analysis and immunohistochemistry), and (ii) characterizing embryonic and adult erythropoiesis in Gsn(-/-) BALB/c mice (morphology and erythroid cultures). RESULTS: In the context of a BALB/c background, the Gsn(-/-) mutation causes embryonic death. Gsn(-/-) embryos show defective erythroid maturation with persistence of circulating nucleated cells. The few Gsn(-/-) mice reaching adulthood fail to recover from phenylhydrazine-induced acute anemia, revealing an impaired response to stress erythropoiesis. In in vitro differentiation assays, E13.5 fetal liver Gsn(-/-) cells failed to undergo terminal maturation, a defect partially rescued by Cytochalasin D, and mimicked by administration of Jasplakinolide to the wild-type control samples. CONCLUSIONS: In BALB/c mice, gelsolin deficiency alters the equilibrium between erythrocyte actin polymerization and depolymerization, causing impaired terminal maturation. We suggest a non-redundant role for gelsolin in terminal erythroid differentiation, possibly contributing to the Gsn(-/-) mice lethality observed in mid-gestation.


Asunto(s)
Células Madre Embrionarias/patología , Eritrocitos/patología , Eritropoyesis/genética , Gelsolina/genética , Hígado/patología , Actinas/antagonistas & inhibidores , Actinas/metabolismo , Anemia/inducido químicamente , Animales , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Citocalasina D/farmacología , Depsipéptidos/farmacología , Embrión de Mamíferos , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Feto , Gelsolina/deficiencia , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Fenilhidrazinas/toxicidad
16.
J Biol Chem ; 285(29): 22676-88, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20472933

RESUMEN

Actin dynamics determines podocyte morphology during development and in response to podocyte injury and might be necessary for maintaining normal podocyte morphology. Because podocyte intercellular junction receptor Nephrin plays a role in regulating actin dynamics, and given the described role of cofilin in actin filament polymerization and severing, we hypothesized that cofilin-1 activity is regulated by Nephrin and is necessary in normal podocyte actin dynamics. Nephrin activation induced cofilin dephosphorylation via intermediaries that include phosphatidylinositol 3-kinase, SSH1, 14-3-3, and LIMK in a cell culture model. This Nephrin-induced cofilin activation required a direct interaction between Nephrin and the p85 subunit of phosphatidylinositol 3-kinase. In a similar fashion, cofilin-1 dephosphorylation was observed in a rat model of podocyte injury at a time when foot process spreading is initially observed. To investigate the necessity of cofilin-1 in the glomerulus, podocyte-specific Cfl1 null mice were generated. Cfl1 null podocytes developed normally. However, these mice developed persistent proteinuria by 3 months of age, although they did not exhibit foot process spreading until 8 months, when the rate of urinary protein excretion became more exaggerated. In a mouse model of podocyte injury, protamine sulfate perfusion of the Cfl1 mutant mouse induced a broadened and flattened foot process morphology that was distinct from that observed following perfusion of control kidneys, and mutant podocytes did not recover normal structure following additional perfusion with heparin sulfate. We conclude that cofilin-1 is necessary for maintenance of normal podocyte architecture and for actin structural changes that occur during induction and recovery from podocyte injury.


Asunto(s)
Cofilina 1/metabolismo , Podocitos/metabolismo , Actinas/metabolismo , Albuminuria/metabolismo , Animales , Línea Celular , Femenino , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Humanos , Quinasas Lim/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Especificidad de Órganos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Podocitos/patología , Podocitos/ultraestructura , Protaminas , Unión Proteica , Seudópodos/metabolismo , Seudópodos/ultraestructura , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley
17.
Cells ; 10(9)2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34571959

RESUMEN

Profilin functions have been discussed in numerous cellular processes, including actin polymerization. One puzzling aspect is the concomitant expression of more than one profilin isoform in most tissues. In neuronal precursors and in neurons, profilin 1 and profilin 2 are co-expressed, but their specific and redundant functions in brain morphogenesis are still unclear. Using a conditional knockout mouse model to inactivate both profilins in the developing CNS, we found that threshold levels of profilin are necessary for the maintenance of the neuronal stem-cell compartment and the generation of the differentiated neurons, irrespective of the specific isoform. During embryonic development, profilin 1 is more abundant than profilin 2; consequently, modulation of profilin 1 levels resulted in a more severe phenotype than depletion of profilin 2. Interestingly, the relevance of the isoforms was reversed in the postnatal brain. Morphology of mature neurons showed a stronger dependence on profilin 2, since this is the predominant isoform in neurons. Our data highlight redundant functions of profilins in neuronal precursor expansion and differentiation, as well as in the maintenance of pyramidal neuron dendritic arborization. The specific profilin isoform is less relevant; however, a threshold profilin level is essential. We propose that the common activity of profilin 1 and profilin 2 in actin dynamics is responsible for the observed compensatory effects.


Asunto(s)
Encéfalo/metabolismo , Neuronas/metabolismo , Profilinas/metabolismo , Animales , Diferenciación Celular/fisiología , Ratones , Isoformas de Proteínas/metabolismo
18.
Front Cell Dev Biol ; 9: 749559, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869336

RESUMEN

Profilins (PFNs) are key regulatory proteins for the actin polymerization in cells and are encoded in mouse and humans by four Pfn genes. PFNs are involved in cell mobility, cell growth, neurogenesis, and metastasis of tumor cells. The testes-specific PFN3 is localized in the acroplaxome-manchette complex of developing spermatozoa. We demonstrate that PFN3 further localizes in the Golgi complex and proacrosomal vesicles during spermiogenesis, suggesting a role in vesicle transport for acrosome formation. Using CRISPR/Cas9 genome editing, we generated mice deficient for Pfn3. Pfn3-/- males are subfertile, displaying a type II globozoospermia. We revealed that Pfn3-/- sperm display abnormal manchette development leading to an amorphous sperm head shape. Additionally, Pfn3-/- sperm showed reduced sperm motility resulting from flagellum deformities. We show that acrosome biogenesis is impaired starting from the Golgi phase, and mature sperm seems to suffer from a cytoplasm removal defect. An RNA-seq analysis revealed an upregulation of Trim27 and downregulation of Atg2a. As a consequence, mTOR was activated and AMPK was suppressed, resulting in the inhibition of autophagy. This dysregulation of AMPK/mTOR affected the autophagic flux, which is hallmarked by LC3B accumulation and increased SQSTM1 protein levels. Autophagy is involved in proacrosomal vesicle fusion and transport to form the acrosome. We conclude that this disruption leads to the observed malformation of the acrosome. TRIM27 is associated with PFN3 as determined by co-immunoprecipitation from testis extracts. Further, actin-related protein ARPM1 was absent in the nuclear fraction of Pfn3-/- testes and sperm. This suggests that lack of PFN3 leads to destabilization of the PFN3-ARPM1 complex, resulting in the degradation of ARPM1. Interestingly, in the Pfn3-/- testes, we detected increased protein levels of essential actin regulatory proteins, cofilin-1 (CFL1), cofilin-2 (CFL2), and actin depolymerizing factor (ADF). Taken together, our results reveal the importance for PFN3 in male fertility and implicate this protein as a candidate for male factor infertility in humans.

19.
Glia ; 58(6): 706-15, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20014276

RESUMEN

Reorganization of the actin cytoskeleton is necessary for Schwann cell proliferation, migration and for the morphological changes associated with sorting, ensheathing and myelination of axons. Such reorganization requires regulated severing and depolymerization of actin filaments. Gelsolin is an actin filament severing protein expressed in many cell types including Schwann cells. Using Gelsolin knockout mice, we investigated the role of this protein in the myelination and remyelination of the peripheral nervous system. Our results show that although gelsolin is not necessary for developmental myelination, it is required for timely remyelination of the sciatic nerve following crush injury. Gelsolin is necessary for macrophage motility in culture, and its absence is likely to impair the recruitment of macrophages to the injury site.


Asunto(s)
Gelsolina/metabolismo , Macrófagos/fisiología , Células de Schwann/fisiología , Neuropatía Ciática/patología , Neuropatía Ciática/fisiopatología , Factores de Edad , Animales , Antígenos de Diferenciación/metabolismo , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular , Células Cultivadas , Citoesqueleto/metabolismo , Gelsolina/deficiencia , Etiquetado Corte-Fin in Situ/métodos , Macrófagos/ultraestructura , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión/métodos , Proteínas del Tejido Nervioso/metabolismo , Netrinas , Células de Schwann/ultraestructura , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo
20.
Mol Cell Neurosci ; 42(1): 66-74, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19497369

RESUMEN

Spinal muscular atrophy (SMA) is the most common human genetic disease resulting in infant mortality. SMA is caused by mutations or deletions in the ubiquitously expressed survival motor neuron 1 (SMN1) gene. Why SMA specifically affects motor neurons remains poorly understood. We have shown that Smn deficient PC12 cells have increased levels of the neuronal profilin IIa protein, leading to an inappropriate activation of the RhoA/ROCK pathway. This suggests that mis-regulation of neuronal actin dynamics is central to SMA pathogenesis. Here, we demonstrate an increase in profilin IIa and a decrease in plastin 3 protein levels in a SMA mouse model. Furthermore, knock-out of profilin II upregulates plastin 3 expression in a Smn-dependent manner. However, the depletion of profilin II and the restoration of plastin 3 are not sufficient to rescue the SMA phenotype. Our study suggests that additional regulators of actin dynamics must also contribute to SMA pathogenesis.


Asunto(s)
Actinas/metabolismo , Regulación de la Expresión Génica/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Atrofia Muscular Espinal/metabolismo , Profilinas/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/fisiopatología , Profilinas/genética , Ratas , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA