Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Phys Rev Lett ; 127(15): 157403, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34678033

RESUMEN

While valleys (energy extrema) are present in all band structures of solids, their preeminent role in determining exciton resonances and dynamics in atomically thin transition metal dichalcogenides (TMDC) is unique. Using two-dimensional coherent electronic spectroscopy, we find that exciton decoherence occurs on a much faster timescale in MoSe_{2} bilayers than that in the monolayers. We further identify two population relaxation channels in the bilayer, a coherent and an incoherent one. Our microscopic model reveals that phonon-emission processes facilitate scattering events from the K valley to other lower-energy Γ and Λ valleys in the bilayer. Our combined experimental and theoretical studies unequivocally establish different microscopic mechanisms that determine exciton quantum dynamics in TMDC monolayers and bilayers. Understanding exciton quantum dynamics provides critical guidance to the manipulation of spin-valley degrees of freedom in TMDC bilayers.

2.
Nano Lett ; 17(10): 6321-6329, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28898091

RESUMEN

We show that two-photon absorption (TPA) is highly anisotropic in CdSe nanoplatelets, thus promoting them as a new class of directional two-photon absorbers with large cross sections. Comparing two-dimensional k-space spectroscopic measurements of the one-photon and two-photon excitation of an oriented monolayer of platelets, it is revealed that TPA into the continuum is a directional phenomenon. This is in contrast to one-photon absorption. The observed directional TPA is shown to be related to fundamental band anisotropies of zincblende CdSe and the ultrastrong anisotropic confinement. We recover the internal transition dipole distribution and find that this directionality arises from the intrinsic directionality of the underlying Bloch and envelope functions of the states involved. We note that the photoemission from the CdSe platelets is highly anisotropic following either one- or two-photon excitation. Given the directionality and high TPA cross-section of these platelets, they may, for example, find employment as efficient logic AND elements in integrated photonic devices, or directional photon converters.

3.
Nano Lett ; 16(10): 6576-6583, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27646777

RESUMEN

We present a study of the application potential of CdSe nanoplatelets (NPLs), a model system for colloidal 2D materials, as field-controlled emitters. We demonstrate that their emission can be changed by 28% upon application of electrical fields up to 175 kV/cm, a very high modulation depth for field-controlled nanoemitters. From our experimental results we estimate the exciton binding energy in 5.5 monolayer CdSe nanoplatelets to be EB = 170 meV; hence CdSe NPLs exhibit highly robust excitons which are stable even at room temperature. This opens up the possibility to tune the emission and recombination dynamics efficiently by external fields. Our analysis further allows a quantitative discrimination of spectral changes of the emission energy and changes in PL intensity related to broadening of the emission line width as well as changes in the intrinsic radiative rates which are directly connected to the measured changes in the PL decay dynamics. With the developed field-dependent population model treating all occurring field-dependent effects in a global analysis, we are able to quantify, e.g., the ground state exciton transition dipole moment (3.0 × 10-29 Cm) and its polarizability, which determine the radiative rate, as well as the (static) exciton polarizability (8.6 × 10-8 eV cm2/kV2), all in good agreement with theory. Our results show that an efficient field control over the exciton recombination dynamics, emission line width, and emission energy in these nanoparticles is feasible and opens up application potential as field-controlled emitters.

4.
Opt Express ; 24(2): A430-3, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26832595

RESUMEN

Dating back to decades or even centuries ago, colloidal nanophotonics during the last ten years rapidly extends towards light emitting devices, lasers, sensors and photonic circuitry to manifest itself as an emerging technology platform rather than an entirely academic research field.

5.
Phys Rev Lett ; 117(25): 257402, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-28036191

RESUMEN

We investigate valley dynamics associated with trions in monolayer tungsten diselenide (WSe_{2}) using polarization resolved two-color pump-probe spectroscopy. When tuning the pump and probe energy across the trion resonance, distinct trion valley polarization dynamics are observed as a function of energy and attributed to the intravalley and intervalley trions in monolayer WSe_{2}. We observe no decay of a near-unity valley polarization associated with the intravalley trions during ∼ 25 ps, while the valley polarization of the intervalley trions exhibits a fast decay of ∼4 ps. Furthermore, we show that resonant excitation is a prerequisite for observing the long-lived valley polarization associated with the intravalley trion. The exceptionally robust valley polarization associated with resonantly created intravalley trions discovered here may be explored for future valleytronic applications such as valley Hall effects.

6.
Phys Rev Lett ; 116(11): 116802, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-27035317

RESUMEN

We evidence excited state emission from p states well below ground state saturation in CdSe nanoplatelets. Size-dependent exciton ground and excited state energies and population dynamics are determined by four independent methods: time-resolved PL, time-integrated PL, rate equation modeling, and Hartree renormalized k·p calculations-all in very good agreement. The ground state-excited state energy spacing strongly increases with the lateral platelet quantization. Depending on its detuning to the LO phonon energy, the PL decay of CdSe platelets is governed by a size tunable LO phonon bottleneck, related to the low exciton-phonon coupling, very large oscillator strength, and energy spacing of both states. This is, for instance, ideal to tune lasing properties. CdSe platelets are perfectly suited to control the exciton-phonon interaction by changing their lateral size while the optical transition energy is determined by their thickness.

7.
Phys Chem Chem Phys ; 18(4): 3197-203, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26743562

RESUMEN

We investigate the temperature-dependent decay kinetics of type II CdSe-CdTe and CdTe-CdSe core-lateral shell nanoplatelets. From a kinetic analysis of the photoluminescence (PL) decay and a measurement of the temperature dependent quantum yield we deduce the temperature dependence of the non-radiative and radiative lifetimes of hetero nanoplates. In line with the predictions of the giant oscillator strength effect in 2D we observe a strong increase of the radiative lifetime with temperature. This is attributed to an increase of the homogeneous transition linewidth with temperature. Comparing core only and hetero platelets we observe a significant prolongation of the radiative lifetime in type II platelets by two orders in magnitude while the quantum yield is barely affected. In a careful analysis of the PL decay transients we compare different recombination models, including electron hole pairs and exciton decay, being relevant for the applicability of those structures in photonic applications like solar cells or lasers. We conclude that the observed biexponential PL decay behavior in hetero platelets is predominately due to spatially indirect excitons being present at the hetero junction and not ionized e-h pair recombination.

8.
Nano Lett ; 15(8): 4985-92, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26190135

RESUMEN

We report a comprehensive study on the two-photon absorption cross sections of colloidal CdSe nanoplatelets, -rods, and -dots of different sizes by the means of z-scan and two-photon excitation spectroscopy. Platelets combine large particle volumes with ultra strong confinement. In contrast to weakly confined nanocrystals, the TPA cross sections of CdSe nanoplatelets scale superlinearly with volume (V(∼2)) and show ten times more efficient two-photon absorption than nanorods or dots. This unexpectedly strong shape dependence goes well beyond the effect of local fields. The larger the particles' aspect ratio, the greater is the confinement related electronic contribution to the increased two-photon absorption. Both electronic confinement and local field effects favor the platelets and make them unique two-photon absorbers with outstanding cross sections of up to 10(7) GM, the largest ever reported for (colloidal) semiconductor nanocrystals and ideally suited for two-photon imaging and nonlinear optoelectronics. The obtained results are confirmed by two independent techniques as well as a new self-referencing method.

9.
Opt Express ; 21(23): 28856-61, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24514399

RESUMEN

The enhanced nonlinear interactions that are driven by surface-plasmon resonances have readily been exploited for the purpose of optical frequency conversion in metallic structures. As of yet, however, little attention has been payed to the exact particulate nature of the conversion process. We show evidence that a surface plasmon and photon can annihilate simultaneously to generate a photon having the sum frequency. The signature for this nonlinear interaction is revealed by probing the condition for momentum conservation using a two-beam k-space spectroscopic method that is applied to a gold film in the Kretschmann geometry. The inverse of the observed nonlinear interaction-an exotic form of parametric down-conversion-would act as a source of surface plasmons in the near-field that are quantum correlated with photons in the far-field.

10.
Opt Express ; 21(20): 23950-62, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24104306

RESUMEN

The interference between two spectral lines of the frequency comb of a fiber femtosecond laser is used to generate millimeter-wave and terahertz tones. The two lines are selected by stimulated Brillouin scattering (SBS) amplification. All other modes are strongly rejected based on polarization discrimination, using the polarization-pulling effect that is associated with SBS. The inherent high spectral quality of a femtosecond fiber laser comb allows generation of millimeter- and terahertz waves with linewidths below 1 Hz, and a phase noise of -105 dBc/Hz at 10 kHz offset. The generation, free-space transmission and detection of continuous waves at 1 THz are demonstrated as well. Lastly, the generated millimeter-wave carriers are modulated by 40 Gbit/s data. The entire system consists of a fiber laser and standard equipment of optical telecommunications. Besides metrology, spectroscopy and astronomy, the method can be utilized for the emergent field of wireless millimeter-wave and THz-communications at ultra-high data rates.

11.
Opt Express ; 21(13): 16210-21, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23842406

RESUMEN

In this article a new method is presented that allows for low loss implementation of fast carrier transport structures in diffraction limited photonic crystal resonators. We utilize a 'node-matched doping' process in which precise silicon doping results in comb-like shaped, highly-doped diode areas that are matched to the spatial field distribution of the optical modes of a Fabry-Pérot resonator. While the doping is only applied to areas with low optical field strength, the intrinsic diode region overlaps with an optical field maximum. The presented node-matched diode-modulators, combining small size, high-speed, thermal stability and energy-efficient switching could become the centerpiece for monolithically integrated transceivers.

12.
Nano Lett ; 12(6): 3151-7, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22625408

RESUMEN

We study the electronic structure of ultrathin zinc-blende two-dimensional (2D)-CdSe nanosheets both theoretically, by Hartree-renormalized k·p calculations including Coulomb interaction, and experimentally, by temperature-dependent and time-resolved photoluminescence measurements. The observed 2D-heavy hole exciton states show a strong influence of vertical confinement and dielectric screening. A very weak coupling to phonons results in a low phonon-contribution to the homogeneous line-broadening. The 2D-nanosheets exhibit much narrower ensemble absorption and emission linewidths as compared to the best colloidal CdSe nanocrystallites ensembles. Since those nanoplatelets can be easily stacked and tend to roll up as they are large, we see a way to form new types of multiple quantum wells and II-VI nanotubes, for example, for fluorescence markers.


Asunto(s)
Compuestos de Cadmio/química , Coloides/química , Membranas Artificiales , Nanoestructuras/química , Nanoestructuras/ultraestructura , Compuestos de Selenio/química , Transporte de Electrón , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
13.
Nano Lett ; 12(5): 2249-53, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22432930

RESUMEN

Carbon nanotubes as one-dimensional nanostructures are ideal model systems to study relaxation channels of excited charged carriers. The understanding of the ultrafast scattering processes is the key for exploiting the huge application potential that nanotubes offer, e.g., for light-emitting and detecting nanoscale electronic devices. In a joint study of two-color pump-probe experiments and microscopic calculations based on the density matrix formalism, we extract, both experimentally and theoretically, a picosecond carrier relaxation dynamics, and ascribe it to the intraband scattering of excited carriers with acoustic phonons. The calculated picosecond relaxation times show a decrease for smaller tube diameters. The best agreement between experiment and theory is obtained for the (8,7) nanotubes with the largest investigated diameter and chiral angle for which the applied zone-folded tight-binding wave functions are a good approximation.

14.
Phys Rev Lett ; 108(13): 136802, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22540719

RESUMEN

Metallic nanostructures support extreme localization and enhancement of optical fields via surface-plasmon (SP) resonances. Although SP are associated with giant enhancements of nonlinear phenomena such as second-harmonic generation (SHG), the role of SP in the process, whether as a field-enhancing catalyst or as a quasiparticle converted in the interaction, has remained experimentally elusive. We demonstrate how k-space spectroscopy can distinguish between the plasmonic and photonic SHG processes that occur in a metal nanofilm when it is optically driven via the Kretschmann geometry. The results revealed a nonlinear interaction where two SP annihilate to create a second-harmonic photon. This knowledge has implications for realizing the inverse process, plasmonic parametric down-conversion, which could act as a coherent source of entangled SP pairs.

15.
Opt Lett ; 36(9): 1644-6, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21540955

RESUMEN

A Raman laser based on a bulk silicon single crystal with 1.127 µm emission wavelength is demonstrated. The Si crystal with 30 mm length was placed into an external cavity and pumped by a Q-switched Nd:YAG master oscillator power amplifier system. Strong defocusing of the pump and Raman laser beam by free carriers was compensated by an intracavity lens. Raman laser operation with a pulse duration of 2.5 ns was identified by a Raman laser threshold significantly lower than the single-pass stimulated Raman-scattering threshold. Linear absorption losses of the 1.06415 µm pump radiation are strongly reduced by cooling the Si crystal to a temperature of 10 K.

16.
Nanoscale ; 13(12): 6266-6267, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33734269

RESUMEN

Correction for 'Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties' by Sabrine Ayari et al., Nanoscale, 2020, 12, 14448-14458, DOI: .

17.
Sci Rep ; 11(1): 14647, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34282225

RESUMEN

Multiresistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) cause serious postoperative infections. A skin tolerant far-UVC (< 240 nm) irradiation system for their inactivation is presented here. It uses UVC LEDs in combination with a spectral filter and provides a peak wavelength of 233 nm, with a full width at half maximum of 12 nm, and an irradiance of 44 µW/cm2. MRSA bacteria in different concentrations on blood agar plates were inactivated with irradiation doses in the range of 15-40 mJ/cm2. Porcine skin irradiated with a dose of 40 mJ/cm2 at 233 nm showed only 3.7% CPD and 2.3% 6-4PP DNA damage. Corresponding irradiation at 254 nm caused 15-30 times higher damage. Thus, the skin damage caused by the disinfectant doses is so small that it can be expected to be compensated by the skin's natural repair mechanisms. LED-based far-UVC lamps could therefore soon be used in everyday clinical practice to eradicate multiresistant pathogens directly on humans.


Asunto(s)
Desinfección/métodos , Resistencia a Múltiples Medicamentos/efectos de la radiación , Fenómenos Fisiológicos de la Piel/efectos de la radiación , Rayos Ultravioleta , Animales , Infección Hospitalaria/prevención & control , Daño del ADN , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/efectos de la radiación , Viabilidad Microbiana/efectos de la radiación , Complicaciones Posoperatorias/prevención & control , Tolerancia a Radiación/fisiología , Piel/metabolismo , Piel/patología , Piel/efectos de la radiación , Porcinos , Rayos Ultravioleta/efectos adversos
18.
Nanoscale ; 12(46): 23521-23531, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33225335

RESUMEN

We investigate the lateral size tunability of the exciton diffusion coefficient and mobility in colloidal quantum wells by means of line width analysis and theoretical modeling. We show that the exciton diffusion coefficient and mobility in laterally finite 2D systems like CdSe nanoplatelets can be tuned via the lateral size and aspect ratio. The coupling to acoustic and optical phonons can be altered via the lateral size and aspect ratio of the platelets. Subsequently the exciton diffusion and mobility become tunable since these phonon scattering processes determine and limit the mobility. At 4 K the exciton mobility increases from ∼ 4 × 103 cm2 V-1 s-1 to more than 1.4 × 104 cm2 V-1 s-1 for large platelets, while there are weaker changes with size and the mobility is around 8 × 101 cm2 V-1 s-1 for large platelets at room temperature. In turn at 4 K the exciton diffusion coefficient increases with the lateral size from ∼ 1.3 cm2 s-1 to ∼ 5 cm2 s-1, while it is around half the value for large platelets at room temperature. Our experimental results are in good agreement with theoretical modeling, showing a lateral size and aspect ratio dependence. The findings open up the possibility for materials with tunable exciton mobility, diffusion or emission line width, but quasi constant transition energy. High exciton mobility is desirable e.g. for solar cells and allows efficient excitation harvesting and extraction.

19.
Nanoscale ; 12(27): 14448-14458, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32618327

RESUMEN

We present a theoretical study combined with experimental validations demonstrating that CdSe nanoplatelets are a model system to investigate the tunability of trions and excitons in laterally finite 2D semiconductors. Our results show that the trion binding energy can be tuned from 36 meV to 18 meV with the lateral size and decreasing aspect ratio, while the oscillator strength ratio of trions to excitons decreases. In contrast to conventional quantum dots, the trion oscillator strength in a nanoplatelet at low temperature is smaller than that of the exciton. The trion and exciton Bohr radii become lateral size tunable, e.g. from ∼3.5 to 4.8 nm for the trion. We show that dielectric screening has strong impact on these properties. By theoretical modeling of transition energies, binding energies and oscillator strength of trions and excitons and comparison with experimental findings, we demonstrate that these properties are lateral size and aspect ratio tunable and can be engineered by dielectric confinement, allowing to suppress e.g. detrimental trion emission in devices. Our results strongly impact further in-depth studies, as the demonstrated lateral size tunable trion and exciton manifold is expected to influence properties like gain mechanisms, lasing, quantum efficiency and transport even at room temperature due to the high and tunable trion binding energies.

20.
Opt Express ; 17(7): 5774-82, 2009 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-19333346

RESUMEN

The second-order photon correlation function g((2))(tau) of photons emitted by a continuously pumped ensemble of N two-level systems coupled to a single-mode optical cavity well below the lasing threshold is investigated theoretically. A giant photon bunching is found for N < 10 emitters as the microscopic counterpart of spontaneous emission noise driven quasi-periodic superradiant pulse sequences in macroscopic systems of large numbers of emitters N >> 1. The phenomenon of giant photon bunching is preserved even for N = 2 and can be explained by the cooperative evolution via dark and bright two-atom states resulting into emission of superradiant photon pairs. The sensitivity of g((2)) to microscopic dephasing processes and resonance frequency detuning opens the door for photon bunching spectroscopy.


Asunto(s)
Luz , Modelos Estadísticos , Simulación por Computador , Fotones , Teoría Cuántica , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA