Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 9(30): 10933-10939, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28731095

RESUMEN

Conducting domain walls (CDWs) in ferroelectric materials are promising candidates for applications in a manifold of nanoscale, optoelectronic devices. Characterization of their microscopic properties, however, remains challenging due to their small dimension and highly insulating environment. Here, we inspect individual CDWs in single-crystalline LiNbO3 by the combination of photoemission electron microscopy (PEEM) and second harmonic generation (SHG) microscopy. While SHG unveils the overall domain wall inclination angle α, PEEM is sensitive to local conductance variations, both at and away from the domain wall. Thus, the two imaging techniques deliver complementary information over a large field of view. In agreement with earlier theoretical predictions we find that the local conductance is dictated by α and reveal a quantitative connection between them. Our results help to elucidate the electronic structure of CDWs and underline the value of PEEM as a non-contact characterization tool for mapping local conductance variations in highly resistive environments.

2.
Phys Rev Lett ; 61(16): 1875-1877, 1988 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-10038920
3.
Phys Rev Lett ; 86(26 Pt 1): 6014-7, 2001 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-11415417

RESUMEN

In the probably first successful photon correlation spectroscopy experiment on a crystalline solid, inelastic light scattering of vibrating random-field-pinned domain walls has been observed at subkilohertz frequencies in the uniaxial relaxor ferroelectric Sr(0.61--x)CexBa(0.39)Nb(2)O(6). In the paraelectric relaxor phase the response of polar nanoclusters becomes overdamped and Rayleigh-like.

4.
Inorg Chem ; 40(1): 87-94, 2001 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-11195394

RESUMEN

The synthesis, crystal structure, and physical characterization of the coordination compounds [Ni(en)2]4[Fe(CN)5NO]2[Fe(CN)6]x5H2O (1), [Ni(en)2][Fe(CN)5NO]x3H2O (2), [Mn(3-MeOsalen)(H2O)]2[Fe(CN)5NO] (3), and [Mn(5-Brsalen)]2[Fe(CN)5NO] (4) are presented. 1 crystallizes in the monoclinic space group P2(1)/n (a = 7.407(4) A, b = 28.963(6) A, c = 14.744(5) A, alpha = 90 degrees, beta = 103.26(4) degrees, gamma = 90 degrees, Z = 2). Its structure consists of branched linear chains formed by cis-[Ni(en)2]2+ cations and ferrocyanide and nitroprusside anions. The presence of two kinds of iron(II) sites has been demonstrated by Mössbauer spectroscopy. 2 crystallizes in the monoclinic space group P2(1)/c (a = 11.076(3) A, b = 10.983(2) A, c = 17.018(5) A, alpha = 90 degrees, beta = 107.25(2) degrees, gamma = 90 degrees, Z = 4). Its structure consists of zigzag chains formed by an alternated array of cis-[Ni(en)2]2+ cations and nitroprusside anions. 3 crystallizes in the triclinic space group P1 (a = 8.896(5) A, b = 10.430(5) A, c = 12.699(5) A, alpha = 71.110(5) degrees, beta = 79.990(5) degrees, gamma = 89.470(5) degrees, Z = 1). Its structure comprises neutral trinuclear bimetallic complexes in which a central [Fe(CN)5NO]2- anion is linked to two [Mn(3-MeOsalen)]+ cations. 4 crystallizes in the tetragonal space group P4/ncc (a = 13.630(5) A, c = 21.420(8) A, Z = 4). Its structure shows an extended 2D neutral network formed by cyclic octameric [-Mn-NC-Fe-CN-]4 units. The magnetic properties of these compounds indicate the presence of quasi-isolated paramagnetic Ni2+ and Mn3+. Irradiated samples of the four compounds have been studied by differential scanning calorimetry to detect the existence of the long-lived metastable states of nitroprusside.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA