Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 122(4): 4847-4883, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34928592

RESUMEN

Life in our planet is highly dependent on plants as they are the primary source of food, regulators of the atmosphere, and providers of a variety of materials. In this work, we review the progress on bioelectronic devices for plants and biohybrid systems based on plants, therefore discussing advancements that view plants either from a biological or a technological perspective, respectively. We give an overview on wearable and implantable bioelectronic devices for monitoring and modulating plant physiology that can be used as tools in basic plant science or find application in agriculture. Furthermore, we discuss plant-wearable devices for monitoring a plant's microenvironment that will enable optimization of growth conditions. The review then covers plant biohybrid systems where plants are an integral part of devices or are converted to devices upon functionalization with smart materials, including self-organized electronics, plant nanobionics, and energy applications. The review focuses on advancements based on organic electronic and carbon-based materials and discusses opportunities, challenges, as well as future steps.


Asunto(s)
Carbono , Dispositivos Electrónicos Vestibles , Electrónica , Plantas
2.
Anal Chem ; 92(19): 13172-13181, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32886488

RESUMEN

Fc gamma receptors (FcγRs) translate antigen recognition by immunoglobulin G (IgG) into various immune responses. A better understanding of this key element of immunity promises novel insights into mechanisms of (auto-/allo-)immune diseases and more rationally designed antibody-based drugs. Glycosylation on both IgG and FcγR impacts their interaction dramatically. Regarding FcγR glycosylation profiling, major analytical challenges are associated with the presence of multiple glycosylation sites in close proximity and large structural heterogeneity. To address these challenges, we developed a straightforward and comprehensive analytical methodology to map FcγRIIIb glycosylation in primary human cells. After neutrophil isolation and immunoprecipitation, glycopeptides containing a single site each were generated by a dual-protease in-gel digestion. The complex mixture was resolved by liquid chromatography-tandem mass spectrometry (LC-MS/MS) providing information on the level of individual donors. In contrast to recently published alternatives for FcγRIIIb, we assessed its site-specific glycosylation in a single LC-MS/MS run and simultaneously determined the donor allotype. Studying FcγRIIIb derived from healthy donor neutrophils, we observed profound differences as compared to the soluble variant and the homologous FcγRIIIa on natural killer cells. This method will allow assessment of differences in FcγRIII glycosylation between individuals, cell types, subcellular locations, and pathophysiological conditions.


Asunto(s)
Neutrófilos/química , Mapeo de Interacción de Proteínas , Receptores de IgG/inmunología , Cromatografía Liquida , Proteínas Ligadas a GPI/análisis , Proteínas Ligadas a GPI/inmunología , Glicosilación , Voluntarios Sanos , Humanos , Neutrófilos/citología , Receptores de IgG/análisis , Espectrometría de Masas en Tándem
3.
Small ; 15(43): e1902189, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31513355

RESUMEN

Electronic control of biological processes with bioelectronic devices holds promise for sophisticated regulation of physiology, for gaining fundamental understanding of biological systems, providing new therapeutic solutions, and digitally mediating adaptations of organisms to external factors. The organic electronic ion pump (OEIP) provides a unique means for electronically-controlled, flow-free delivery of ions, and biomolecules at cellular scale. Here, a miniaturized OEIP device based on glass capillary fibers (c-OEIP) is implanted in a biological organism. The capillary form factor at the sub-100 µm scale of the device enables it to be implanted in soft tissue, while its hyperbranched polyelectrolyte channel and addressing protocol allows efficient delivery of a large aromatic molecule. In the first example of an implantable bioelectronic device in plants, the c-OEIP readily penetrates the leaf of an intact tobacco plant with no significant wound response (evaluated up to 24 h) and effectively delivers the hormone abscisic acid (ABA) into the leaf apoplast. OEIP-mediated delivery of ABA, the phytohormone that regulates plant's tolerance to stress, induces closure of stomata, the microscopic pores in leaf's epidermis that play a vital role in photosynthesis and transpiration. Efficient and localized ABA delivery reveals previously unreported kinetics of ABA-induced signal propagation.


Asunto(s)
Ácido Abscísico/farmacología , Electrónica , Bombas Iónicas/metabolismo , Nicotiana/fisiología , Reguladores del Crecimiento de las Plantas/farmacología , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de los fármacos , Nicotiana/efectos de los fármacos
4.
Biotechnol Bioeng ; 112(6): 1210-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25765286

RESUMEN

The use of microfluidics platforms combined with the optimal optical properties of gold nanoparticles has found plenty of application in molecular biosensing. This paper describes a bio-microfluidic platform coupled to a non-cross-linking colorimetric gold nanoprobe assay to detect a single nucleotide polymorphism associated with increased risk of obesity fat-mass and obesity-associated (FTO) rs9939609 (Carlos et al., 2014). The system enabled significant discrimination between positive and negative assays using a target DNA concentration of 5 ng/µL below the limit of detection of the conventionally used microplate reader (i.e., 15 ng/µL) with 10 times lower solution volume (i.e., 3 µL). A set of optimization of our previously reported bio-microfluidic platform (Bernacka-Wojcik et al., 2013) resulted in a 160% improvement of colorimetric analysis results. Incorporation of planar microlenses increased 6 times signal-to-loss ratio reaching the output optical fiber improving by 34% the colorimetric analysis of gold nanoparticles, while the implementation of an optoelectronic acquisition system yielded increased accuracy and reduced noise. The microfluidic chip was also integrated with a miniature fiber spectrometer to analyze the assays' colorimetric changes and also the LEDs transmission spectra when illuminating through various solutions. Furthermore, by coupling an optical microscope to a digital camera with a long exposure time (30 s), we could visualise the different scatter intensities of gold nanoparticles within channels following salt addition. These intensities correlate well to the expected difference in aggregation between FTO positive (none to small aggregates) and negative samples (large aggregates).


Asunto(s)
Técnicas Biosensibles/métodos , Sondas de ADN , Oro , Microfluídica/métodos , Nanotecnología/métodos , Polimorfismo de Nucleótido Simple , Colorimetría/métodos , Predisposición Genética a la Enfermedad , Humanos , Obesidad/genética , Imagen Óptica/métodos , Análisis Espectral/métodos
5.
Artículo en Inglés | MEDLINE | ID: mdl-38441544

RESUMEN

Biohybrid systems based on plants integrate plant structures and processes into technological components targeting more sustainable solutions. Plants' biocatalytic machinery, for example, has been leveraged for the organization of electronic materials directly in the vasculature and roots of living plants, resulting in biohybrid electrochemical devices. Among other applications, energy storage devices were demonstrated where the charge storage electrodes were seamlessly integrated into the plant tissue. However, the capacitance and the voltage output of a single biohybrid supercapacitor are limited. Here, we developed biohybrid circuits based on functionalized conducting roots, extending the performance of plant based biohybrid energy storage systems. We show that root-supercapacitors can be combined in series and in parallel configuration, achieving up to 1.5 V voltage output or up to 11 mF capacitance, respectively. We further demonstrate that the supercapacitors circuit can be charged with an organic photovoltaic cell, and that the stored charge can be used to power an electrochromic display or a bioelectronic device. Furthermore, the functionalized roots degrade in composting similarly to native roots. The proof-of-concept demonstrations illustrate the potential of this technology to achieve more sustainable solutions for powering low consumption devices such as bioelectronics for agriculture or IoT applications.

6.
J Control Release ; 369: 668-683, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548064

RESUMEN

Local and long-lasting administration of potent chemotherapeutics is a promising therapeutic intervention to increase the efficiency of chemotherapy of hard-to-treat tumors such as the most lethal brain tumors, glioblastomas (GBM). However, despite high toxicity for GBM cells, potent chemotherapeutics such as gemcitabine (Gem) cannot be widely implemented as they do not efficiently cross the blood brain barrier (BBB). As an alternative method for continuous administration of Gem, we here operate freestanding iontronic pumps - "GemIPs" - equipped with a custom-synthesized ion exchange membrane (IEM) to treat a GBM tumor in an avian embryonic in vivo system. We compare GemIP treatment effects with a topical metronomic treatment and observe that a remarkable growth inhibition was only achieved with steady dosing via GemIPs. Daily topical drug administration (at the maximum dosage that was not lethal for the embryonic host organism) did not decrease tumor sizes, while both treatment regimes caused S-phase cell cycle arrest and apoptosis. We hypothesize that the pharmacodynamic effects generate different intratumoral drug concentration profiles for each technique, which causes this difference in outcome. We created a digital model of the experiment, which proposes a fast decay in the local drug concentration for the topical daily treatment, but a long-lasting high local concentration of Gem close to the tumor area with GemIPs. Continuous chemotherapy with iontronic devices opens new possibilities in cancer treatment: the long-lasting and highly local dosing of clinically available, potent chemotherapeutics to greatly enhance treatment efficiency without systemic side-effects. SIGNIFICANCE STATEMENT: Iontronic pumps (GemIPs) provide continuous and localized administration of the chemotherapeutic gemcitabine (Gem) for treating glioblastoma in vivo. By generating high and constant drug concentrations near the vascularized growing tumor, GemIPs offer an efficient and less harmful alternative to systemic administration. Continuous GemIP dosing resulted in remarkable growth inhibition, superior to daily topical Gem application at higher doses. Our digital modelling shows the advantages of iontronic chemotherapy in overcoming limitations of burst release and transient concentration profiles, and providing precise control over dosing profiles and local distribution. This technology holds promise for future implants, could revolutionize treatment strategies, and offers a new platform for studying the influence of timing and dosing dependencies of already-established drugs in the fight against hard-to-treat tumors.


Asunto(s)
Apoptosis , Neoplasias Encefálicas , Desoxicitidina , Gemcitabina , Glioblastoma , Animales , Desoxicitidina/análogos & derivados , Desoxicitidina/administración & dosificación , Desoxicitidina/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Embrión de Pollo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Administración Metronómica
7.
Front Immunol ; 14: 1214945, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841251

RESUMEN

Introduction: Immunoglobulin G (IgG) contains a conserved N-glycan in the fragment crystallizable (Fc), modulating its structure and effector functions. In anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) alterations of IgG Fc-glycosylation have been observed to correlate with the disease course. Here, we examined longitudinal changes in N-linked Fc glycans of IgG in an AAV patient cohort and their relationship with disease flares. Methods: Using liquid chromatography coupled with mass spectrometry, we analysed IgG Fc-glycosylation in 410 longitudinal samples from 96 individuals with AAV. Results: Analysis of the cross-sectional differences as well as longitudinal changes demonstrated that IgGs of relapsing PR3-ANCA patients have higher ΔFc-bisection at diagnosis (P = 0.004) and exhibit a decrease in Fc-sialylation prior to the relapse (P = 0.0004), discriminating them from non-relapsing patients. Most importantly, PR3-ANCA patients who experienced an ANCA rise and relapsed shortly thereafter, exhibit lower IgG Fc-fucosylation levels compared to non-relapsing patients already 9 months before relapse (P = 0.02). Discussion: Our data indicate that IgG Fc-bisection correlates with long-term treatment outcome, while lower IgG Fc-fucosylation and sialylation associate with impending relapse. Overall, our study replicated the previously published reduction in total IgG Fc-sialylation at the time of relapse, but showed additionally that its onset precedes relapse. Furthermore, our findings on IgG fucosylation and bisection are entirely new. All these IgG Fc-glycosylation features may have the potential to predict a relapse either independently or in combination with known risk factors, such as a rise in ANCA titre.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Anticuerpos Anticitoplasma de Neutrófilos , Humanos , Glicosilación , Estudios Transversales , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/diagnóstico , Inmunoglobulina G , Fragmentos de Inmunoglobulinas , Enfermedad Crónica , Recurrencia , Polisacáridos
8.
Curr Biol ; 33(6): 1019-1035.e8, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36796359

RESUMEN

In Arabidopsis thaliana, local wounding and herbivore feeding provoke leaf-to-leaf propagating Ca2+ waves that are dependent on the activity of members of the glutamate receptor-like channels (GLRs). In systemic tissues, GLRs are needed to sustain the synthesis of jasmonic acid (JA) with the subsequent activation of JA-dependent signaling response required for the plant acclimation to the perceived stress. Even though the role of GLRs is well established, the mechanism through which they are activated remains unclear. Here, we report that in vivo, the amino-acid-dependent activation of the AtGLR3.3 channel and systemic responses require a functional ligand-binding domain. By combining imaging and genetics, we show that leaf mechanical injury, such as wounds and burns, as well as hypo-osmotic stress in root cells, induces the systemic apoplastic increase of L-glutamate (L-Glu), which is largely independent of AtGLR3.3 that is instead required for systemic cytosolic Ca2+ elevation. Moreover, by using a bioelectronic approach, we show that the local release of minute concentrations of L-Glu in the leaf lamina fails to induce any long-distance Ca2+ waves.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Ácido Glutámico , Presión , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Adv Sci (Weinh) ; 10(14): e2206409, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36935365

RESUMEN

Plant vasculature transports molecules that play a crucial role in plant signaling including systemic responses and acclimation to diverse environmental conditions. Targeted controlled delivery of molecules to the vascular tissue can be a biomimetic way to induce long distance responses, providing a new tool for the fundamental studies and engineering of stress-tolerant plants. Here, a flexible organic electronic ion pump, an electrophoretic delivery device, for controlled delivery of phytohormones directly in plant vascular tissue is developed. The c-OEIP is based on polyimide-coated glass capillaries that significantly enhance the mechanical robustness of these microscale devices while being minimally disruptive for the plant. The polyelectrolyte channel is based on low-cost and commercially available precursors that can be photocured with blue light, establishing much cheaper and safer system than the state-of-the-art. To trigger OEIP-induced plant response, the phytohormone abscisic acid (ABA) in the petiole of intact Arabidopsis plants is delivered. ABA is one of the main phytohormones involved in plant stress responses and induces stomata closure under drought conditions to reduce water loss and prevent wilting. The OEIP-mediated ABA delivery triggered fast and long-lasting stomata closure far away from the delivery point demonstrating systemic vascular transport of the delivered ABA, verified delivering deuterium-labeled ABA.


Asunto(s)
Arabidopsis , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Estomas de Plantas/fisiología , Ácido Abscísico/farmacología , Plantas , Arabidopsis/fisiología , Electrónica , Bombas Iónicas
10.
Life (Basel) ; 11(9)2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34575138

RESUMEN

BACKGROUND: Male infertility is increasingly becoming a health and demographic problem. While it may originate from congenital or acquired diseases, it can also result from environmental exposure. Hence, the complexity of involved molecular mechanisms often requires a multiparametric approach. This study aimed to associate semen parameters with sperm DNA fragmentation, chromatin maturity and seminal plasma protein N-glycosylation. METHODS: The study was conducted with 166 participants, 20-55 y old, 82 normozoospermic and 84 with pathological diagnosis. Sperm was analyzed by Halosperm assay and aniline blue staining, while seminal plasma total protein N-glycans were analyzed by ultra-high-performance liquid chromatography. RESULTS: Sperm DNA fragmentation was significantly increased in the pathological group and was inversely correlated with sperm motility and viability. Seminal plasma total protein N-glycans were chromatographically separated in 37 individual peaks. The pattern of seminal plasma N-glycan peaks (SPGP) showed that SPGP14 significantly differs between men with normal and pathological semen parameters (p < 0.001). The multivariate analysis showed that when sperm chromatin maturity increases by 10%, SPGP17 decreases by 14% while SPGP25 increases by 25%. CONCLUSION: DNA integrity and seminal plasma N-glycans are associated with pathological sperm parameters. Specific N-glycans are also associated with sperm chromatin maturity and have a potential in future fertility research and clinical diagnostics.

11.
Sci Rep ; 11(1): 24045, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911982

RESUMEN

As a lymphoid organ, the spleen hosts a wide range of immune cell populations, which not only remove blood-borne antigens, but also generate and regulate antigen-specific immune responses. In particular, the splenic microenvironment has been demonstrated to play a prominent role in adaptive immune responses to enveloped viral infections and alloantigens. During both types of immunizations, antigen-specific immunoglobulins G (IgGs) have been characterized by the reduced amount of fucose present on N-linked glycans of the fragment crystallizable (Fc) region. These glycans are essential for mediating the induction of immune effector functions. Therefore, we hypothesized that a spleen may modulate humoral responses and serve as a preferential site for afucosylated IgG responses, which potentially play a role in immune thrombocytopenia (ITP) pathogenesis. To determine the role of the spleen in IgG-Fc glycosylation, we performed IgG subclass-specific liquid chromatography-mass spectrometry (LC-MS) analysis of Fc glycosylation in a large cohort of individuals splenectomized due to trauma, due to ITP, or spherocytosis. IgG-Fc fucosylation was consistently increased after splenectomy, while no effects for IgG-Fc galactosylation and sialylation were observed. An increase in IgG1- and IgG2/3-Fc fucosylation level upon splenectomy has been reported here for the first time, suggesting that immune responses occurring in the spleen may be particularly prone to generate afucosylated IgG responses. Surprisingly, the level of total IgG-Fc fucosylation was decreased in ITP patients compared to healthy controls. Overall, our results suggest a yet unrecognized role of the spleen in either the induction or maintenance of afucosylated IgG responses by B cells.


Asunto(s)
Inmunoglobulina G/inmunología , Bazo/inmunología , Adolescente , Adulto , Especificidad de Anticuerpos/inmunología , Antígenos/inmunología , Estudios de Casos y Controles , Niño , Femenino , Fucosa/metabolismo , Glicosilación , Interacciones Huésped-Patógeno/inmunología , Humanos , Enfermedades del Sistema Inmune/diagnóstico , Enfermedades del Sistema Inmune/etiología , Enfermedades del Sistema Inmune/metabolismo , Enfermedades del Sistema Inmune/terapia , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/metabolismo , Inmunoglobulina G/metabolismo , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Púrpura Trombocitopénica Idiopática/diagnóstico , Púrpura Trombocitopénica Idiopática/etiología , Púrpura Trombocitopénica Idiopática/metabolismo , Púrpura Trombocitopénica Idiopática/terapia , Bazo/metabolismo , Esplenectomía , Adulto Joven
12.
Sci Rep ; 8(1): 381, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321602

RESUMEN

Many diseases have their treatment options narrowed and end up being fatal if detected during later stages. As a consequence, point-of-care devices have an increasing importance for routine screening applications in the health sector due to their portability, fast analyses and decreased cost. For that purpose, a multifunctional chip was developed and tested using gold nanoprobes to perform RNA optical detection inside a microfluidic chip without the need of molecular amplification steps. As a proof-of-concept, this device was used for the rapid detection of chronic myeloid leukemia, a hemato-oncological disease that would benefit from early stage diagnostics and screening tests. The chip passively mixed target RNA from samples, gold nanoprobes and saline solution to infer a result from their final colorimetric properties. An optical fiber network was used to evaluate its transmitted spectra inside the chip. Trials provided accurate output results within 3 min, yielding signal-to-noise ratios up to 9 dB. When compared to actual state-of-art screening techniques of chronic myeloid leukemia, these results were, at microscale, at least 10 times faster than the reported detection methods for chronic myeloid leukemia. Concerning point-of-care applications, this work paves the way for other new and more complex versions of optical based genosensors.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Técnicas Analíticas Microfluídicas/instrumentación , ARN/análisis , Detección Precoz del Cáncer , Oro , Humanos , Células K562 , Dispositivos Laboratorio en un Chip , Nanopartículas del Metal , Fibras Ópticas , Sistemas de Atención de Punto , Relación Señal-Ruido , Células THP-1
13.
Artículo en Inglés | MEDLINE | ID: mdl-27242969

RESUMEN

Staphylococcus aureus is a commensal inhabitant of skin and mucous membranes in nose vestibule but also an important opportunistic pathogen of humans and livestock. The extracellular proteome as a whole constitutes its major virulence determinant; however, the involvement of particular proteins is still relatively poorly understood. In this study, we compared the extracellular proteomes of poultry-derived S. aureus strains exhibiting a virulent (VIR) and non-virulent (NVIR) phenotype in a chicken embryo experimental infection model with the aim to identify proteomic signatures associated with the particular phenotypes. Despite significant heterogeneity within the analyzed proteomes, we identified alpha-haemolysin and bifunctional autolysin as indicators of virulence, whereas glutamylendopeptidase production was characteristic for non-virulent strains. Staphopain C (StpC) was identified in both the VIR and NVIR proteomes and the latter fact contradicted previous findings suggesting its involvement in virulence. By supplementing NVIR, StpC-negative strains with StpC, and comparing the virulence of parental and supplemented strains, we demonstrated that staphopain C alone does not affect staphylococcal virulence in a chicken embryo model.


Asunto(s)
Proteínas Bacterianas/análisis , Proteínas Bacterianas/metabolismo , Proteoma/análisis , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/química , Factores de Virulencia/análisis , Animales , Embrión de Pollo , Modelos Animales de Enfermedad , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/patogenicidad
14.
Micromachines (Basel) ; 7(10)2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404355

RESUMEN

This paper describes the development of a novel microfluidic platform for multifactorial analysis integrating four label-free detection methods: electrical impedance, refractometry, optical absorption and fluorescence. We present the rationale for the design and the details of the microfabrication of this multifactorial hybrid microfluidic chip. The structure of the platform consists of a three-dimensionally patterned polydimethylsiloxane top part attached to a bottom SU-8 epoxy-based negative photoresist part, where microelectrodes and optical fibers are incorporated to enable impedance and optical analysis. As a proof of concept, the chip functions have been tested and explored, enabling a diversity of applications: (i) impedance-based identification of the size of micro beads, as well as counting and distinguishing of erythrocytes by their volume or membrane properties; (ii) simultaneous determination of the refractive index and optical absorption properties of solutions; and (iii) fluorescence-based bead counting.

15.
Acta Biochim Pol ; 62(3): 367-81, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26307769

RESUMEN

Staphylococcus aureus is a widespread, opportunistic pathogen that causes community and hospital acquired infections. Its high pathogenicity is driven by multifactorial and complex mechanisms determined by the ability of the bacterium to express a wide variety of virulence factors. The proteome secreted into extracellular milieu is a rich reservoir of such factors which include mainly nonenzymatic toxins and enzymes. Simultaneously, membrane proteins, membrane-cell wall interface proteins and cell wall-associated proteins also strongly influence staphylococcal virulence. Proteomics shows a great potential in exploring the role of the extracellular proteome in cell physiology, including the pathogenic potential of particular strains of staphylococci. In turn, understanding the bacterial physiology including the interconnections of particular factors within the extracellular proteomes is a key to the development of the ever needed, novel antibacterial strategies. Here, we briefly overview the latest applications of gel-based and gel-free proteomic techniques in the identification of the virulence factors within S. aureus secretome and surfacome. Such studies are of utmost importance in understanding the host-pathogen interactions, analysis of the role of staphylococcal regulatory systems and also the detection of posttranslational modifications emerging as important modifiers of the infection process.


Asunto(s)
Proteómica/métodos , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Animales , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Genoma , Interacciones Huésped-Patógeno , Humanos , Proteínas de la Membrana/genética , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Infecciones Estafilocócicas/microbiología , Virulencia , Factores de Virulencia/metabolismo
16.
Biosens Bioelectron ; 48: 87-93, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23660340

RESUMEN

We have projected and fabricated a microfluidic platform for DNA sensing that makes use of an optical colorimetric detection method based on gold nanoparticles. The platform was fabricated using replica moulding technology in PDMS patterned by high-aspect-ratio SU-8 moulds. Biochips of various geometries were tested and evaluated in order to find out the most efficient architecture, and the rational for design, microfabrication and detection performance is presented. The best biochip configuration has been successfully applied to the DNA detection of Mycobacterium tuberculosis using only 3 µl on DNA solution (i.e. 90 ng of target DNA), therefore a 20-fold reduction of reagents volume is obtained when compared with the actual state of the art.


Asunto(s)
ADN Bacteriano/análisis , Oro/química , Técnicas Analíticas Microfluídicas/instrumentación , Mycobacterium tuberculosis/aislamiento & purificación , Nanopartículas/química , ADN Bacteriano/genética , ADN de Cadena Simple/química , Diseño de Equipo , Tecnología de Fibra Óptica/instrumentación , Humanos , Mycobacterium tuberculosis/genética , Sensibilidad y Especificidad , Tuberculosis/microbiología
17.
Biosens Bioelectron ; 25(5): 1229-34, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19857954

RESUMEN

A dye sensitized TiO(2) photodetector has been integrated with a DNA detection method based on non-cross-linking hybridization of DNA-functionalized gold nanoparticles, resulting in a disposable colorimetric biosensor. We present a new approach for the fabrication of dye sensitized TiO(2) photodetectors by an inkjet printing technique-a non-contact digital, additive, no mask and no vacuum patterning method, ideal for cost efficient mass production. The developed biosensor was compared against a dye sensitized photodetector fabricated by the traditional "doctor blade" method. Detection of gold nanoparticle aggregation was possible for concentrations as low as 1.0 nM for the "doctor blade" system, and 1.5 nM for the inkjet printed photodetector. The demonstrated sensitivity limits of developed biosensors are comparable to those of spectrophotometric techniques (1.0 nM). Our results show that a difference higher than 17% by traditional photodetector and 6% by inkjet printed in the photoresponses for the complementary and non-complementary gold nanoprobe assays could be attained for a specific DNA sequence from Mycobacterium tuberculosis, the etiologic agent of human tuberculosis. The decrease of costs associated with molecular diagnostic provided by a platform such as the one presented here may prove of paramount importance in developing countries.


Asunto(s)
Técnicas Biosensibles/instrumentación , Periféricos de Computador , ADN Bacteriano/análisis , Mycobacterium tuberculosis/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Fotometría/instrumentación , Titanio/química , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA