Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3388-3398, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27592162

RESUMEN

BACKGROUND: Equine type 1 polysaccharide storage myopathy (PSSM1) is associated with a missense mutation (R309H) in the glycogen synthase (GYS1) gene, enhanced glycogen synthase (GS) activity and excessive glycogen and amylopectate inclusions in muscle. METHODS: Equine muscle biochemical and recombinant enzyme kinetic assays in vitro and homology modelling in silico, were used to investigate the hypothesis that higher GS activity in affected horse muscle is caused by higher GS expression, dysregulation, or constitutive activation via a conformational change. RESULTS: PSSM1-affected horse muscle had significantly higher glycogen content than control horse muscle despite no difference in GS expression. GS activity was significantly higher in muscle from homozygous mutants than from heterozygote and control horses, in the absence and presence of the allosteric regulator, glucose 6 phosphate (G6P). Muscle from homozygous mutant horses also had significantly increased GS phosphorylation at sites 2+2a and significantly higher AMPKα1 (an upstream kinase) expression than controls, likely reflecting a physiological attempt to reduce GS enzyme activity. Recombinant mutant GS was highly active with a considerably lower Km for UDP-glucose, in the presence and absence of G6P, when compared to wild type GS, and despite its phosphorylation. CONCLUSIONS: Elevated activity of the mutant enzyme is associated with ineffective regulation via phosphorylation rendering it constitutively active. Modelling suggested that the mutation disrupts a salt bridge that normally stabilises the basal state, shifting the equilibrium to the enzyme's active state. GENERAL SIGNIFICANCE: This study explains the gain of function pathogenesis in this highly prevalent polyglucosan myopathy.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno/enzimología , Enfermedad del Almacenamiento de Glucógeno/epidemiología , Glucógeno Sintasa/genética , Caballos/metabolismo , Mutación/genética , Adenilato Quinasa/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Cruzamiento , Activación Enzimática , Transportador de Glucosa de Tipo 4/metabolismo , Glucosa-6-Fosfato/metabolismo , Glucógeno/metabolismo , Glucógeno Sintasa/química , Glucógeno Sintasa/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Cinética , Modelos Moleculares , Músculo Esquelético/enzimología , Proteínas Mutantes/metabolismo , Fosforilación , Prevalencia , Subunidades de Proteína/metabolismo , Homología Estructural de Proteína , Uridina Difosfato Glucosa/metabolismo
2.
J Physiol ; 594(8): 2339-58, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26801521

RESUMEN

KEY POINTS: This study aimed to provide molecular insight into the differential effects of age and physical inactivity on the regulation of substrate metabolism during moderate-intensity exercise. Using the arteriovenous balance technique, we studied the effect of immobilization of one leg for 2 weeks on leg substrate utilization in young and older men during two-legged dynamic knee-extensor moderate-intensity exercise, as well as changes in key proteins in muscle metabolism before and after exercise. Age and immobilization did not affect relative carbohydrate and fat utilization during exercise, but the older men had higher uptake of exogenous fatty acids, whereas the young men relied more on endogenous fatty acids during exercise. Using a combined whole-leg and molecular approach, we provide evidence that both age and physical inactivity result in intramuscular lipid accumulation, but this occurs only in part through the same mechanisms. ABSTRACT: Age and inactivity have been associated with intramuscular triglyceride (IMTG) accumulation. Here, we attempt to disentangle these factors by studying the effect of 2 weeks of unilateral leg immobilization on substrate utilization across the legs during moderate-intensity exercise in young (n = 17; 23 ± 1 years old) and older men (n = 15; 68 ± 1 years old), while the contralateral leg served as the control. After immobilization, the participants performed two-legged isolated knee-extensor exercise at 20 ± 1 W (∼50% maximal work capacity) for 45 min with catheters inserted in the brachial artery and both femoral veins. Biopsy samples obtained from vastus lateralis muscles of both legs before and after exercise were used for analysis of substrates, protein content and enzyme activities. During exercise, leg substrate utilization (respiratory quotient) did not differ between groups or legs. Leg fatty acid uptake was greater in older than in young men, and although young men demonstrated net leg glycerol release during exercise, older men showed net glycerol uptake. At baseline, IMTG, muscle pyruvate dehydrogenase complex activity and the protein content of adipose triglyceride lipase, acetyl-CoA carboxylase 2 and AMP-activated protein kinase (AMPK)γ3 were higher in young than in older men. Furthermore, adipose triglyceride lipase, plasma membrane-associated fatty acid binding protein and AMPKγ3 subunit protein contents were lower and IMTG was higher in the immobilized than the contralateral leg in young and older men. Thus, immobilization and age did not affect substrate choice (respiratory quotient) during moderate exercise, but the whole-leg and molecular differences in fatty acid mobilization could explain the age- and immobilization-induced IMTG accumulation.


Asunto(s)
Envejecimiento/metabolismo , Umbral Anaerobio , Ejercicio Físico , Músculo Esquelético/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Anciano , Envejecimiento/fisiología , Metabolismo de los Hidratos de Carbono , Humanos , Pierna/fisiología , Lipasa/metabolismo , Metabolismo de los Lípidos , Masculino , Músculo Esquelético/metabolismo , Restricción Física , Adulto Joven
3.
Diabetologia ; 55(5): 1435-45, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22322917

RESUMEN

AIMS/HYPOTHESIS: In type 2 diabetes, reduced insulin-stimulated glucose disposal, primarily glycogen synthesis, is associated with defective insulin activation of glycogen synthase (GS) in skeletal muscle. Hyperglycaemia may compensate for these defects, but to what extent it involves improved insulin signalling to glycogen synthesis remains to be clarified. METHODS: Whole-body glucose metabolism was studied in 12 patients with type 2 diabetes, and 10 lean and 10 obese non-diabetic controls by means of indirect calorimetry and tracers during a euglycaemic-hyperinsulinaemic clamp. The diabetic patients underwent a second isoglycaemic-hyperinsulinaemic clamp maintaining fasting hyperglycaemia. Muscle biopsies from m. vastus lateralis were obtained before and after the clamp for examination of GS and relevant insulin signalling components. RESULTS: During euglycaemia, insulin-stimulated glucose disposal, glucose oxidation and non-oxidative glucose metabolism were reduced in the diabetic group compared with both control groups (p < 0.05). This was associated with impaired insulin-stimulated GS and AKT2 activity, deficient dephosphorylation at GS sites 2 + 2a, and reduced Thr308 and Ser473 phosphorylation of AKT. When studied under hyperglycaemia, all variables of insulin-stimulated glucose metabolism were normalised compared with the weight-matched controls. However, insulin activation and dephosphorylation (site 2 + 2a) of GS as well as activation of AKT2 and phosphorylation at Thr308 and Ser473 remained impaired (p < 0.05). CONCLUSIONS/INTERPRETATIONS: These data confirm that hyperglycaemia compensates for decreased whole-body glucose disposal in type 2 diabetes. In contrast to previous less well-controlled studies, we provide evidence that the compensatory effect of hyperglycaemia in patients with type 2 diabetes does not involve normalisation of insulin action on GS or upstream signalling in skeletal muscle.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Glucógeno Sintasa/metabolismo , Hiperglucemia/metabolismo , Insulina/administración & dosificación , Músculo Esquelético/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Masculino , Persona de Mediana Edad , Fosforilación , Serina/metabolismo , Treonina/metabolismo
4.
Am J Physiol Endocrinol Metab ; 302(2): E190-200, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22028408

RESUMEN

During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal muscle under these conditions are unresolved. In a randomized design, we investigated eight healthy subjects after a 72-h fast compared with a 10-h overnight fast. Insulin action on skeletal muscle was assessed by a hyperinsulinemic euglycemic clamp and by determining insulin signaling to glucose transport. In addition, substrate oxidation, skeletal muscle lipid content, regulation of glycogen synthesis, and AMPK signaling were assessed. Skeletal muscle insulin sensitivity was reduced profoundly in response to a 72-h fast and substrate oxidation shifted to predominantly lipid oxidation. This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS160 phosphorylation, in combination with glycogen accumulation and increased intramuscular lipid content, may provide the underlying mechanisms for resistance to insulin in skeletal muscle after a prolonged fast.


Asunto(s)
Ayuno/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Glucógeno/metabolismo , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/fisiología , Músculo Esquelético/metabolismo , Adenilato Quinasa/metabolismo , Adulto , Estudios Cruzados , Glucosa/metabolismo , Técnica de Clampeo de la Glucosa , Humanos , Insulina/metabolismo , Masculino , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología
5.
Diabetologia ; 54(1): 157-67, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20938636

RESUMEN

AIMS/HYPOTHESIS: Insulin-mediated glucose disposal rates (R(d)) are reduced in type 2 diabetic patients, a process in which intrinsic signalling defects are thought to be involved. Phosphorylation of TBC1 domain family, member 4 (TBC1D4) is at present the most distal insulin receptor signalling event linked to glucose transport. In this study, we examined insulin action on site-specific phosphorylation of TBC1D4 and the effect of exercise training on insulin action and signalling to TBC1D4 in skeletal muscle from type 2 diabetic patients. METHODS: During a 3 h euglycaemic-hyperinsulinaemic (80 mU min⁻¹ m⁻²) clamp, we obtained M. vastus lateralis biopsies from 13 obese type 2 diabetic and 13 obese, non-diabetic control individuals before and after 10 weeks of endurance exercise-training. RESULTS: Before training, reductions in insulin-stimulated R (d), together with impaired insulin-stimulated glycogen synthase fractional velocity, Akt Thr³°8 phosphorylation and phosphorylation of TBC1D4 at Ser³¹8, Ser588 and Ser75¹ were observed in skeletal muscle from diabetic patients. Interestingly, exercise-training normalised insulin-induced TBC1D4 phosphorylation in diabetic patients. This happened independently of increased TBC1D4 protein content, but exercise-training did not normalise Akt phosphorylation in diabetic patients. In both groups, training-induced improvements in insulin-stimulated R(d) (~20%) were associated with increased muscle protein content of Akt, TBC1D4, α2-AMP-activated kinase (AMPK), glycogen synthase, hexokinase II and GLUT4 (20-75%). CONCLUSIONS/INTERPRETATION: Impaired insulin-induced site-specific TBC1D4 phosphorylation may contribute to skeletal muscle insulin resistance in type 2 diabetes. The mechanisms by which exercise-training improves insulin sensitivity in type 2 diabetes may involve augmented signalling of TBC1D4 and increased skeletal muscle content of key insulin signalling and effector proteins, e.g., Akt, TBC1D4, AMPK, glycogen synthase, GLUT4 and hexokinase II.


Asunto(s)
Ejercicio Físico/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Glucemia/metabolismo , Western Blotting , Péptido C/sangre , Diabetes Mellitus Tipo 2/sangre , Electroforesis en Gel de Poliacrilamida , Técnica de Clampeo de la Glucosa , Hemoglobina Glucada/metabolismo , Glucógeno Sintasa/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Fosforilación
6.
Nat Commun ; 12(1): 304, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436631

RESUMEN

Skeletal muscle conveys several of the health-promoting effects of exercise; yet the underlying mechanisms are not fully elucidated. Studying skeletal muscle is challenging due to its different fiber types and the presence of non-muscle cells. This can be circumvented by isolation of single muscle fibers. Here, we develop a workflow enabling proteomics analysis of pools of isolated muscle fibers from freeze-dried human muscle biopsies. We identify more than 4000 proteins in slow- and fast-twitch muscle fibers. Exercise training alters expression of 237 and 172 proteins in slow- and fast-twitch muscle fibers, respectively. Interestingly, expression levels of secreted proteins and proteins involved in transcription, mitochondrial metabolism, Ca2+ signaling, and fat and glucose metabolism adapts to training in a fiber type-specific manner. Our data provide a resource to elucidate molecular mechanisms underlying muscle function and health, and our workflow allows fiber type-specific proteomic analyses of snap-frozen non-embedded human muscle biopsies.


Asunto(s)
Adaptación Fisiológica , Ejercicio Físico , Liofilización , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Proteómica , Biomarcadores/metabolismo , Biopsia , Glucosa/metabolismo , Humanos , Mitocondrias/metabolismo , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Análisis de Componente Principal , Proteoma/metabolismo
7.
Diabetologia ; 53(9): 1998-2007, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20512309

RESUMEN

AIMS/HYPOTHESIS: Insulin resistance in skeletal muscle is a key factor in the development of type 2 diabetes and although some studies indicate that this could be partly attributed to reduced content and activity of various proximal and distal insulin signalling molecules, consensus is lacking. We therefore aimed to investigate the regulation of proximal insulin signalling in skeletal muscle and its effect on glucose metabolism in a large non-diabetic population. METHODS: We examined 184 non-diabetic twins with gold-standard techniques including the euglycaemic-hyperinsulinaemic clamp. Insulin signalling was evaluated at three key levels, i.e. the insulin receptor, IRS-1 and V-akt murine thymoma viral oncogene (Akt) levels, employing kinase assays and phospho-specific western blotting. RESULTS: Proximal insulin signalling was not associated with obesity, age or sex. However, birthweight was positively associated with IRS-1-associated phosphoinositide 3-kinase (PI3K; IRS-1-PI3K) activity (p = 0.04); maximal aerobic capacity (VO2(max)), paradoxically, was negatively associated with IRS-1-PI3K (p = 0.02) and Akt2 activity (p = 0.01). Additionally, we found low heritability estimates for most measures of insulin signalling activity. Glucose disposal was positively associated with Akt-308 phosphorylation (p < 0.001) and Akt2 activity (p = 0.05), but not with insulin receptor tyrosine kinase or IRS-1-PI3K activity. CONCLUSIONS/INTERPRETATION: With the exception of birthweight, 'classical' modifiers of insulin action, including genetics, age, sex, obesity and VO2(max) do not seem to mediate their most central effects on whole-body insulin sensitivity through modulation of proximal insulin signalling in skeletal muscle. We also demonstrated an association between Akt activity and in vivo insulin sensitivity, suggesting a role of Akt in control of in vivo insulin resistance and potentially in type 2 diabetes.


Asunto(s)
Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Adulto , Factores de Edad , Peso al Nacer/fisiología , Western Blotting , Femenino , Glucosa/metabolismo , Glucosa/farmacología , Técnica de Clampeo de la Glucosa , Humanos , Insulina , Proteínas Sustrato del Receptor de Insulina/metabolismo , Masculino , Persona de Mediana Edad , Músculo Esquelético/efectos de los fármacos , Obesidad/fisiopatología , Receptor de Insulina/metabolismo , Factores Sexuales , Transducción de Señal/efectos de los fármacos
8.
Scand J Med Sci Sports ; 20(4): 593-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19705999

RESUMEN

Exercise-induced adaptations in skeletal muscle oxidative enzymes are suggested to result from the cumulative effects of transient changes in gene expression after each single exercise session. However, for several oxidative enzymes, no changes in mRNA expression are detected up to 8 h after exercise. To test the hypothesis that mRNA expression of many oxidative enzymes is up-regulated late in recovery (10-24 h) after exercise, male subjects (n=8) performed a 90-min cycling exercise (70% VO(2-max)), with muscle biopsies obtained before exercise (pre), and after 10, 18 and 24 h of recovery. The mRNA expression of carnitine-palmitoyltransferase (CPT)I, CD36, 3-hydroxyacyl-CoA-dehydrogenase (HAD), cytochrome (Cyt)c, aminolevulinate-delta-synthase (ALAS)1 and GLUT4 was 100-200% higher at 10-24 h of recovery from exercise than in a control trial. Exercise induced a 100-300% increase in peroxisome proliferator-activated receptor gamma co-activator (PGC)-1alpha, citrate synthase (CS), CPTI, CD36, HAD and ALAS1 mRNA contents at 10-24 h of recovery relative to before exercise. No protein changes were detected in Cytc, ALAS1 or GLUT4. This shows that mRNA expression of several training-responsive oxidative enzymes is up-regulated in human skeletal muscle at 10-24 h of recovery, supporting that exercise-induced adaptations of these oxidative enzymes can be the result of the cumulative effects of transient changes in mRNA expression.


Asunto(s)
Ejercicio Físico/fisiología , Músculo Esquelético/enzimología , Resistencia Física/genética , ARN Mensajero/metabolismo , Adulto , Glucógeno/análisis , Glucógeno/genética , Humanos , Masculino , Músculo Esquelético/metabolismo , Adulto Joven
9.
Diabetologia ; 52(5): 891-900, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19252894

RESUMEN

AIMS/HYPOTHESIS: TBC1 domain family, member 4 (TBC1D4; also known as AS160) is a cellular signalling intermediate to glucose transport regulated by insulin-dependent and -independent mechanisms. Skeletal muscle insulin sensitivity is increased after acute exercise by an unknown mechanism that does not involve modulation at proximal insulin signalling intermediates. We hypothesised that signalling through TBC1D4 is involved in this effect of exercise as it is a common signalling element for insulin and exercise. METHODS: Insulin-regulated glucose metabolism was evaluated in 12 healthy moderately trained young men 4 h after one-legged exercise at basal and during a euglycaemic-hyperinsulinaemic clamp. Vastus lateralis biopsies were taken before and immediately after the clamp. RESULTS: Insulin stimulation increased glucose uptake in both legs, with greater effects (approximately 80%, p < 0.01) in the previously exercised leg. TBC1D4 phosphorylation, assessed using the phospho-AKT (protein kinase B)substrate antibody and phospho- and site-specific antibodies targeting six phosphorylation sites on TBC1D4, increased at similar degrees to insulin stimulation in the previously exercised and rested legs (p < 0.01). However, TBC1D4 phosphorylation on Ser-318, Ser-341, Ser-588 and Ser-751 was higher in the previously exercised leg, both in the absence and in the presence of insulin (p < 0.01; Ser-588, p = 0.09; observed power = 0.39). 14-3-3 binding capacity for TBC1D4 increased equally (p < 0.01) in both legs during insulin stimulation. CONCLUSION/INTERPRETATION: We provide evidence for site-specific phosphorylation of TBC1D4 in human skeletal muscle in response to physiological hyperinsulinaemia. The data support the idea that TBC1D4 is a nexus for insulin- and exercise-responsive signals that may mediate increased insulin action after exercise.


Asunto(s)
Ejercicio Físico/fisiología , Proteínas Activadoras de GTPasa/fisiología , Insulina/fisiología , Músculo Esquelético/fisiología , Tejido Adiposo/citología , Tejido Adiposo/fisiología , Adulto , Biopsia , Glucemia/metabolismo , Cartilla de ADN , Dieta , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Hiperinsulinismo/etiología , Articulación de la Rodilla/fisiología , Pierna/fisiología , Masculino , Consumo de Oxígeno , Fosforilación , Descanso , Transducción de Señal , Posición Supina , Carga de Trabajo , Adulto Joven
10.
Int J Obes (Lond) ; 32 Suppl 4: S13-7, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18719592

RESUMEN

5'AMP-activated protein kinase (AMPK) is recognized as an important intracellular energy sensor, shutting down energy-consuming processes and turning on energy-generating processes. Discovery of target proteins of AMPK has dramatically increased in the past 10 years. Historically, AMPK was first shown to regulate fatty acid and cholesterol synthesis, but is now hypothesized to take part in the regulation of energy/fuel balance not only at the cellular level but also at the level of the whole organism. In this brief review we will discuss some of the roles of AMPK in skeletal muscle.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Músculo Esquelético/enzimología , Animales , Glucosa/metabolismo , Humanos , Mitocondrias Musculares/fisiología , Músculo Esquelético/fisiología , Ratas
11.
Diabetes Metab ; 42(4): 280-4, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27068875

RESUMEN

AIM: Phosphatase and tensin homologue (PTEN) reduces insulin sensitivity by inhibiting the phosphatidylinositol 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue (Akt) pathway. This study investigated how a common single nucleotide polymorphism near PTEN, previously associated with fasting levels of plasma insulin and glucose, influences in vivo glucose metabolism and insulin signalling. The primary outcome measure was the gene variant's association with peripheral glucose disposal rate and, secondarily, whether this association was explained by altered activities of PTEN targets PI3K and Akt. METHODS: A total of 183 normoglycaemic Danes, including 158 twins and 25 singletons, were genotyped for PTEN rs11202614, which is in complete linkage disequilibrium with rs2142136 and rs10788575, which have also been reported in association with glycaemic traits and type 2 diabetes (T2D). Hepatic and peripheral insulin sensitivity was measured using tracer and euglycaemic-hyperinsulinaemic clamp techniques; insulin secretion was assessed by intravenous glucose tolerance test; and muscle biopsies were taken during insulin infusion from 150 twins for measurement of PI3K and Akt activities. RESULTS: The minor G allele of PTEN rs11202614 was associated with elevated fasting plasma insulin levels and a decreased peripheral glucose disposal rate, but not with the hepatic insulin resistance index or insulin secretion measured as the first-phase insulin response and disposition index. The single nucleotide polymorphism was not associated with either PI3K or Akt activities. CONCLUSION: A common PTEN variation is associated with peripheral insulin resistance and subsequent risk of developing T2D. However, the association with insulin resistance is not explained by decreased proximal insulin signalling in skeletal muscle.


Asunto(s)
Resistencia a la Insulina/genética , Fosfohidrolasa PTEN/genética , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Diabetes Mellitus Tipo 2/genética , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Secreción de Insulina , Desequilibrio de Ligamiento , Masculino , Persona de Mediana Edad , Esposos , Gemelos
13.
J Appl Physiol (1985) ; 117(3): 289-96, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24876356

RESUMEN

BACKGROUND: phosphorylation of AS160 and TBC1D1 plays an important role for GLUT4 mobilization to the cell surface. The phosphorylation of AS160 and TBC1D1 in humans in response to acute exercise is not fully characterized. OBJECTIVE: to study AS160 and TBC1D1 phosphorylation in human skeletal muscle after aerobic exercise followed by a hyperinsulinemic euglycemic clamp. DESIGN: eight healthy men were studied on two occasions: 1) in the resting state and 2) in the hours after a 1-h bout of ergometer cycling. A hyperinsulinemic euglycemic clamp was initiated 240 min after exercise and in a time-matched nonexercised control condition. We obtained muscle biopsies 30 min after exercise and in a time-matched nonexercised control condition (t = 30) and after 30 min of insulin stimulation (t = 270) and investigated site-specific phosphorylation of AS160 and TBC1D1. RESULTS: phosphorylation on AS160 and TBC1D1 was increased 30 min after the exercise bout, whereas phosphorylation of the putative upstream kinases, Akt and AMPK, was unchanged compared with resting control condition. Exercise augmented insulin-stimulated phosphorylation on AS160 at Ser(341) and Ser(704) 270 min after exercise. No additional exercise effects were observed on insulin-stimulated phosphorylation of Thr(642) and Ser(588) on AS160 or Ser(237) and Thr(596) on TBC1D1. CONCLUSIONS: AS160 and TBC1D1 phosphorylations were evident 30 min after exercise without simultaneously increased Akt and AMPK phosphorylation. Unlike TBC1D1, insulin-stimulated site-specific AS160 phosphorylation is modified by prior exercise, but these sites do not include Thr(642) and Ser(588). Together, these data provide new insights into phosphorylation of key regulators of glucose transport in human skeletal muscle.


Asunto(s)
Ejercicio Físico/fisiología , Proteínas Activadoras de GTPasa/metabolismo , Músculo Esquelético/metabolismo , Fosforilación/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Adulto , Transporte Biológico/fisiología , Glucosa/metabolismo , Técnica de Clampeo de la Glucosa , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Insulina/metabolismo , Masculino , Contracción Muscular/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Descanso/fisiología
14.
Acta Physiol (Oxf) ; 205(2): 314-20, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22192354

RESUMEN

AIM: To study whether the phenotypical characteristics (exercise intolerance; reduced spontaneous activity) of the AMPKα2 kinase-dead (KD) mice can be explained by a reduced mitochondrial respiratory flux rates (JO(2) ) in skeletal muscle. Secondly, the effect of the maturation process on JO(2) was studied. METHODS: In tibialis anterior (almost exclusively type 2 fibres) muscle from young (12-17 weeks, n = 7) and mature (25-27 weeks, n = 12) KD and wild-type (WT) (12-17 weeks, n = 9; 25-27 weeks, n = 11) littermates, JO(2) was quantified in permeabilized fibres ex vivo by respirometry, using a substrate-uncoupler-inhibitor-titration (SUIT) protocol: malate, octanoyl carnitine, ADP and glutamate (GMO(3) ), + succinate (GMOS(3) ), + uncoupler (U) and inhibitor (rotenone) of complex I respiration. Citrate synthase (CS) activity was measured as an index of mitochondrial content. RESULTS: Citrate synthase activity was highest in young WT animals and lower in KD animals compared with age-matched WT. JO(2) per mg tissue was lower (P < 0.05) in KD animals (state GMOS(3) ). No uncoupling effect was seen in any of the animals. Normalized oxygen flux (JO(2) /CS) revealed a uniform pattern across the SUIT protocol with no effect of KD. However, JO(2) /CS was higher [GMO(3) , GMOS(3) , U and rotenone (only WT)] in the mature compared with the young mice - irrespective of the genotype (P < 0.05). CONCLUSION: Exercise intolerance and reduced activity level seen in KD mice may be explained by reduced JO(2) in the maximally coupled respiratory state. Furthermore, an enhancement of oxidative phosphorylation capacity per mitochondrion is seen with the maturation process.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxígeno/fisiología , Proteínas Quinasas Activadas por AMP/genética , Animales , Citrato (si)-Sintasa/metabolismo , Ratones , Condicionamiento Físico Animal/fisiología
15.
Acta Physiol (Oxf) ; 205(2): 224-35, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21991887

RESUMEN

AIM: The aim of this study was to test the hypothesis that IL-6 regulates exercise-induced gene responses in subcutaneous adipose tissue in mice. METHODS: Four-month-old male IL-6 whole body knockout (KO) mice and C57B wild-type (WT) mice performed 1 h of treadmill exercise, where subcutaneous adipose tissue (AT) was removed either immediately after, 4 h or 10 h after exercise as well as from mice not running acutely. Moreover, AT was sampled at resting conditions after 5 weeks of exercise training. RESULTS: AT leptin mRNA decreased immediately after a single running exercise bout in both genotypes and returned to baseline within 10 h of recovery in IL-6 KO mice, but not WT mice. Leptin mRNA content decreased in WT and increased in IL-6 KO mice with training, but without significant alterations in leptin protein. Acute exercise induced a decrease in the AT TNFα mRNA content in WT, but not in IL-6-KO mice, while training lowered resting levels of TNFα mRNA in both genotypes. In addition, an exercise-induced decline in AT PPARγ mRNA content was absent in IL-6 KO mice and in line training increased PPARγ mRNA only in IL-6 KO mice. CONCLUSION: The present findings indicate a role of IL-6 in regulating exercise- and training-induced leptin and PPARγ expression in adipose tissue. In addition, while IL-6 is required for TNF-α mRNA reduction in response to acute exercise, IL-6 does not appear to be mandatory for anti-inflammatory effects of exercise training in adipose tissue.


Asunto(s)
Adaptación Fisiológica/fisiología , Interleucina-6/metabolismo , Condicionamiento Físico Animal/fisiología , Grasa Subcutánea/fisiología , Animales , Inflamación/genética , Inflamación/metabolismo , Interleucina-6/genética , Leptina/genética , Leptina/metabolismo , Masculino , Ratones , Ratones Noqueados , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
16.
Acta Physiol (Oxf) ; 202(2): 165-73, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21352507

RESUMEN

AIM: The aim of this study was to test the hypothesis that interleukin (IL)-6 plays a role in exercise-induced peroxisome proliferator-activated receptor γ co-activator (PGC)-1α and tumor necrosis factor (TNF)-α mRNA responses in skeletal muscle and to examine the potential IL-6-mediated AMP-activated protein kinase (AMPK) regulation in these responses. METHODS: Whole body IL-6 knockout (KO) and wildtype (WT) male mice (4 months of age) performed 1 h treadmill exercise. White gastrocnemius (WG) and quadriceps (Quad) muscles were removed immediately (0') or 4 h after exercise and from mice not run acutely. RESULTS: Acute exercise reduced only in WT muscle glycogen concentration to 55 and 35% (P < 0.05) of resting level in Quad and WG respectively. While AMPK and Acetyl CoA carboxylase (ACC) phosphorylation increased 1.3-fold (P < 0.05) in WG and twofold in Quad immediately after exercise in WT mice, no change was detected in WG in IL-6 KO mice. The PGC-1α mRNA content was in resting WG 1.8-fold higher (P < 0.05) in WT mice than in IL-6 KO mice. Exercise induced a delayed PGC-1α mRNA increase in Quad in IL-6 KO mice (12-fold at 4 h) relative to WT mice (fivefold at 0'). The TNF-α mRNA content was in resting Quad twofold higher (P < 0.05) in IL-6 KO than in WT, and WG TNF-α mRNA increased twofold (P < 0.05) immediately after exercise only in IL-6 KO. CONCLUSION: In conclusion, IL-6 affects exercise-induced glycogen use, AMPK signalling and TNF-α mRNA responses in mouse skeletal muscle.


Asunto(s)
Interleucina-6/metabolismo , Músculo Esquelético/fisiología , Músculo Cuádriceps/fisiología , ARN Mensajero/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Animales , Glucógeno/metabolismo , Interleucina-6/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Condicionamiento Físico Animal/fisiología , Transducción de Señal/fisiología , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
17.
Acta Physiol (Oxf) ; 196(1): 155-74, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19243572

RESUMEN

In skeletal muscle, the contraction-activated heterotrimeric 5'-AMP-activated protein kinase (AMPK) protein is proposed to regulate the balance between anabolic and catabolic processes by increasing substrate uptake and turnover in addition to regulating the transcription of proteins involved in mitochondrial biogenesis and other aspects of promoting an oxidative muscle phenotype. Here, the current knowledge on the expression of AMPK subunits in human quadriceps muscle and evidence from rodent studies suggesting distinct AMPK subunit expression pattern in different muscle types is reviewed. Then, the intensity and time dependence of AMPK activation in human quadriceps and rodent muscle are evaluated. Subsequently, a major part of this review critically examines the evidence supporting a necessary and/or sufficient role of AMPK in a broad spectrum of skeletal muscle contraction-relevant processes. These include glucose uptake, glycogen synthesis, post-exercise insulin sensitivity, fatty acid (FA) uptake, intramuscular triacylglyceride hydrolysis, FA oxidation, suppression of protein synthesis, proteolysis, autophagy and transcriptional regulation of genes relevant to promoting an oxidative phenotype.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Animales , Metabolismo Energético/fisiología , Activación Enzimática , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Metabolismo de los Lípidos , Músculo Esquelético/citología , Oxidación-Reducción , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
18.
J Physiol ; 577(Pt 3): 1021-32, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17038425

RESUMEN

5'AMP-activated protein kinase (AMPK) is a key regulator of cellular metabolism and is regulated in muscle during exercise. We have previously established that only three of 12 possible AMPK alpha/beta/gamma-heterotrimers are present in human skeletal muscle. Previous studies describe discrepancies between total AMPK activity and regulation of its target acetyl-CoA-carboxylase (ACC)beta. Also, exercise training decreases expression of the regulatory gamma3 AMPK subunit and attenuates alpha2 AMPK activity during exercise. We hypothesize that these observations reflect a differential regulation of the AMPK heterotrimers. We provide evidence here that only the alpha2/beta2/gamma3 subunit is phosphorylated and activated during high-intensity exercise in vivo. The activity associated with the remaining two AMPK heterotrimers, alpha1/beta2/gamma1 and alpha2/beta2/gamma1, is either unchanged (20 min, 80% maximal oxygen uptake ) or decreased (30 or 120 s sprint-exercise). The differential activity of the heterotrimers leads to a total alpha-AMPK activity, that is decreased (30 s trial), unchanged (120 s trial) and increased (20 min trial). AMPK activity associated with the alpha2/beta2/gamma3 heterotrimer was strongly correlated to gamma3-associated alpha-Thr-172 AMPK phosphorylation (r(2) = 0.84, P < 0.001) and to ACCbeta Ser-221 phosphorylation (r(2) = 0.65, P < 0.001). These data single out the alpha2/beta2/gamma3 heterotrimer as an important actor in exercise-regulated AMPK signalling in human skeletal muscle, probably mediating phosphorylation of ACCbeta.


Asunto(s)
Ejercicio Físico/fisiología , Complejos Multienzimáticos/metabolismo , Músculo Esquelético/fisiología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/metabolismo , Adulto , Humanos , Masculino , Músculo Esquelético/enzimología , Fosforilación , Resistencia Física , Proteínas Quinasas/química , Serina/metabolismo , Transducción de Señal , Treonina/metabolismo , Factores de Tiempo
19.
Diabetologia ; 49(8): 1827-37, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16761106

RESUMEN

AIMS/HYPOTHESIS: Recently we reported the coexistence of postprandial hypoglycaemia and moderate insulin resistance in heterozygous carriers of the Arg1174Gln mutation in the insulin receptor gene (INSR). Controlled studies of in vivo insulin signalling in humans with mutant INSR are unavailable, and therefore the cellular mechanisms underlying insulin resistance in Arg1174Gln carriers remain to be clarified. SUBJECTS, MATERIALS AND METHODS: We studied glucose metabolism and insulin signalling in skeletal muscle from six Arg1174Gln carriers and matched control subjects during a euglycaemic-hyperinsulinaemic clamp. RESULTS: Impaired clearance of exogenous insulin caused four-fold higher clamp insulin levels in Arg1174Gln carriers compared with control subjects (p<0.05). In Arg1174Gln carriers insulin increased glucose disposal and non-oxidative glucose metabolism (p<0.05), but to a lower extent than in controls (p<0.05). Insulin increased Akt phosphorylation at Ser473 and Thr308, inhibited glycogen synthase kinase-3alpha activity, reduced phosphorylation of glycogen synthase at sites 3a+3b, and increased glycogen synthase activity in Arg1174Gln carriers (all p<0.05). In the insulin-stimulated state, Akt phosphorylation at Thr308 and glycogen synthase activity were reduced in Arg1174Gln carriers compared with controls (p<0.05), whereas glycogen synthase kinase-3alpha activity and phosphorylation of glycogen synthase at sites 3a+3b were similar in the two groups. CONCLUSIONS/INTERPRETATION: In vivo insulin signalling in skeletal muscle of patients harbouring the Arg1174Gln mutation is surprisingly intact, with modest impairments in insulin-stimulated activity of Akt and glycogen synthase explaining the moderate degree of insulin resistance. Our data suggest that impaired insulin clearance in part rescues in vivo insulin signalling in muscle in these carriers of a mutant INSR, probably by increasing insulin action on the non-mutated insulin receptors.


Asunto(s)
Sustitución de Aminoácidos , Insulina/fisiología , Músculo Esquelético/fisiología , Mutación , Receptor de Insulina/genética , Adulto , Arginina , Glucemia/metabolismo , Femenino , Tamización de Portadores Genéticos , Glutamina , Humanos , Insulina/metabolismo , Secreción de Insulina , Masculino , Persona de Mediana Edad , Receptor de Insulina/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología
20.
Diabetologia ; 49(6): 1283-91, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16609880

RESUMEN

AIMS/HYPOTHESIS: Circulating levels of adiponectin are negatively associated with multiple indices of insulin resistance, and the concentration is reduced in humans with insulin resistance and type 2 diabetes. However, the mechanisms by which adiponectin improves insulin sensitivity remain unclear. SUBJECTS AND METHODS: Combining euglycaemic-hyperinsulinaemic clamp studies with indirect calorimetry and skeletal muscle biopsies, we examined the relationship between plasma adiponectin and parameters of whole-body glucose and lipid metabolism, and muscle glycogen synthase (GS) activity in 51 Caucasians (ten lean, 21 obese and 20 with type 2 diabetes). RESULTS: Plasma adiponectin was significantly reduced in type 2 diabetic compared with obese and lean subjects. In lean and obese subjects, insulin significantly reduced plasma adiponectin, but this response was blunted in patients with type 2 diabetes. Plasma adiponectin was positively associated with insulin-stimulated glucose disposal (r = 0.48), glucose oxidation (r = 0.54), respiratory quotient (r = 0.58) and non-oxidative glucose metabolism (r = 0.38), and negatively associated with lipid oxidation during insulin stimulation (r = -0.60) after adjustment for body fat (all p < 0.01). Most notably, we found a positive association between plasma adiponectin and insulin stimulation of GS activity in skeletal muscle (r = 0.44, p < 0.01). CONCLUSIONS/INTERPRETATION: Our results indicate that plasma adiponectin may enhance insulin sensitivity by improving the capacity to switch from lipid to glucose oxidation and to store glucose as glycogen in response to insulin, and that low adiponectin may contribute to impaired insulin activation of GS in skeletal muscle of patients with type 2 diabetes.


Asunto(s)
Adiponectina/sangre , Diabetes Mellitus Tipo 2/sangre , Glucógeno Sintasa/metabolismo , Insulina/farmacología , Músculo Esquelético/enzimología , Biopsia , Péptido C/sangre , Diabetes Mellitus Tipo 2/enzimología , Activación Enzimática , Femenino , Técnica de Clampeo de la Glucosa , Glucógeno Sintasa/efectos de los fármacos , Humanos , Insulina/sangre , Lípidos/sangre , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Obesidad/sangre , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA