Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gene Ther ; 30(7-8): 649-658, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37029201

RESUMEN

Gene therapy with AAV vectors carrying genes for neuropeptide Y and its receptor Y2 has been shown to inhibit seizures in multiple animal models of epilepsy. It is however unknown how the AAV serotype or the sequence order of these two transgenes in the expression cassette affects the actual parenchymal gene expression levels and the seizure-suppressant efficacy. To address these questions, we compared three viral vector serotypes (AAV1, AAV2 and AAV8) and two transgene sequence orders (NPY-IRES-Y2 and Y2-IRES-NPY) in a rat model of acutely induced seizures. Wistar male rats were injected bilaterally with viral vectors and 3 weeks later acute seizures were induced by a subcutaneous injection of kainate. The latency until 1st motor seizure, time spent in motor seizure and latency to status epilepticus were measured to evaluate the seizure-suppressing efficacy of these vectors compared to an empty cassette control vector. Based on the results, the effect of the AAV1-NPY-IRES-Y2 vector was further investigated by in vitro electrophysiology, and its ability to achieve transgene overexpression in resected human hippocampal tissue was evaluated. The AAV1-NPY-IRES-Y2 proved to be better to any other serotype or gene sequence considering both transgene expression and ability to suppress induced seizures in rats. The vector also demonstrated transgene-induced decrease of glutamate release from excitatory neuron terminals and significantly increased both NPY and Y2 expression in resected human hippocampal tissue from patients with drug-resistant temporal lobe epilepsy. These results validate the feasibility of NPY/Y2 receptor gene therapy as a therapeutic opportunity in focal epilepsies.


Asunto(s)
Epilepsia , Convulsiones , Ratas , Masculino , Humanos , Animales , Serogrupo , Ratas Wistar , Convulsiones/genética , Convulsiones/terapia , Epilepsia/terapia , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Terapia Genética/métodos , Hipocampo/metabolismo
2.
J Neurosci Res ; 100(10): 1921-1932, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35822521

RESUMEN

Neuroglobin (Ngb) is found in the neurones of several different brain areas and is known to bind oxygen and other gaseous molecules and reactive oxygen species (ROS) in vitro, but it does not seem to act as a respiratory molecule for neurones. Using male and female Ngb-knockout (KO) mice, we addressed the role of Ngb in neuronal brain activity using behavioral tests but found no differences in general behaviors, memory processes, and anxiety-/depression-like behaviors. Oxidative stress and ROS play key roles in epileptogenesis, and oxidative injury produced by an excessive production of free radicals is involved in the initiation and progression of epilepsy. The ROS binding properties led us to hypothesize that lack of Ngb could affect central coping with excitatory stimuli. We consequently explored whether exposure to the excitatory molecule kainate (KA) would increase severity of seizures in mice lacking Ngb. We found that the duration and severity of seizures were increased, while the latency time to develop seizures was shortened in Ngb-KO compared to wildtype adult female mice. Consistently, c-fos expression after KA was significantly increased in Ngb-KO mice in the amygdala and piriform cortex, regions rich in Ngb and known to be centrally involved in seizure generation. Moreover, the measured c-fos expression levels were correlated with seizure susceptibility. With these new findings combined with previous studies we propose that Ngb could constitute an intrinsic defense mechanism against neuronal hyperexcitability and oxidative stress by buffering of ROS in amygdala and other Ngb-containing brain regions.


Asunto(s)
Neuroglobina , Convulsiones , Animales , Femenino , Masculino , Ratones , Neuroglobina/deficiencia , Neuroglobina/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
3.
Int J Mol Sci ; 18(5)2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28445429

RESUMEN

Ghrelin receptor (Ghr-R) signaling in neurons of the ventral tegmental area (VTA) can modulate dopaminergic function and the reward-related effects of both palatable foods and drugs of abuse. In this study, we re-introduced the Ghr-R in VTA neurons in Ghr-R knockout mice (Ghr-RVTA mice) to specifically study the importance of the constitutively active Ghr-R for VTA neuronal signaling. Our results showed that re-introduction of the Ghr-R in the VTA had no impact on body weight or food intake under basal conditions. However, during novel environment stress Ghr-RVTA mice showed increased food intake and energy expenditure compared to Ghr-R knockout mice, demonstrating the significance of Ghr-R signaling in the response to stress. Ghr-RVTA mice also showed increased cocaine-induced locomotor activity compared to Ghr-R knockout mice, highlighting the importance of ghrelin signaling for the reward-related effects of activation of VTA neurons. Overall, our data suggest that re-introduction of the Ghr-R in the mesolimbic reward system of Ghr-R knockout mice increases the level of activation induced by both cocaine and novelty stress.


Asunto(s)
Conducta Animal/fisiología , Receptores de Ghrelina/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Peso Corporal , Dependovirus/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Ingestión de Alimentos , Metabolismo Energético , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Locomoción , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Consumo de Oxígeno , Receptores de Dopamina D2/metabolismo , Receptores de Ghrelina/deficiencia , Receptores de Ghrelina/genética , Tirosina 3-Monooxigenasa/metabolismo
4.
J Neurosci ; 35(26): 9622-31, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26134645

RESUMEN

Development of novel disease-modifying treatment strategies for neurological disorders, which at present have no cure, represents a major challenge for today's neurology. Translation of findings from animal models to humans represents an unresolved gap in most of the preclinical studies. Gene therapy is an evolving innovative approach that may prove useful for clinical applications. In animal models of temporal lobe epilepsy (TLE), gene therapy treatments based on viral vectors encoding NPY or galanin have been shown to effectively suppress seizures. However, how this translates to human TLE remains unknown. A unique possibility to validate these animal studies is provided by a surgical therapeutic approach, whereby resected epileptic tissue from temporal lobes of pharmacoresistant patients are available for neurophysiological studies in vitro. To test whether NPY and galanin have antiepileptic actions in human epileptic tissue as well, we applied these neuropeptides directly to human hippocampal slices in vitro. NPY strongly decreased stimulation-induced EPSPs in dentate gyrus and CA1 (up to 30 and 55%, respectively) via Y2 receptors, while galanin had no significant effect. Receptor autoradiographic binding revealed the presence of both NPY and galanin receptors, while functional receptor binding was only detected for NPY, suggesting that galanin receptor signaling may be impaired. These results underline the importance of validating findings from animal studies in human brain tissue, and advocate for NPY as a more appropriate candidate than galanin for future gene therapy trials in pharmacoresistant TLE patients.


Asunto(s)
Epilepsia/patología , Galanina/farmacología , Hipocampo/efectos de los fármacos , Neuropéptido Y/farmacología , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Adolescente , Adulto , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Hipocampo/patología , Humanos , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Proteínas Asociadas a Microtúbulos , Persona de Mediana Edad , Técnicas de Placa-Clamp , Ensayo de Unión Radioligante , Receptores de Galanina/metabolismo , Receptores de Neuropéptido Y/metabolismo , Isótopos de Azufre/farmacocinética , Adulto Joven
5.
Neurobiol Dis ; 86: 52-61, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26607785

RESUMEN

Although novel treatment strategies based on the gene therapy approach for epilepsy has been encouraging, there is still a gap in demonstrating a proof-of-concept in a clinically relevant animal model and study design. In the present study, a conceptually novel framework reflecting a plausible clinical trial for gene therapy of temporal lobe epilepsy was explored: We investigated (i) whether the post intrahippocampal kainate-induced status epilepticus (SE) model of chronic epilepsy in rats could be clinically relevant; and (ii) whether a translationally designed neuropeptide Y (NPY)/Y2 receptor-based gene therapy approach targeting only the seizure-generating focus unilaterally can decrease seizure frequency in this chronic model of epilepsy. Our data suggest that the intrahippocampal kainate model resembles the disease development of human chronic mesial temporal lobe epilepsy (mTLE): (i) spontaneous seizures originate in the sclerotic hippocampus; (ii) only a part of the animals develops chronic epilepsy; (iii) animals show largely variable seizure frequency that (iv) tends to progressively increase over time. Despite significant hippocampal degeneration caused by the kainate injection, the use of MRI allowed targeting the recombinant adeno-associated viral (rAAV) vectors encoding NPY and Y2 receptor genes to the remaining dorsal and ventral hippocampal areas ipsilateral to the kainate injection. Continuous video-EEG monitoring demonstrated not only prevention of the progressive increase in seizure frequency in rAAV-NPY/Y2 treated animals as compared to the controls, but even 45% decrease of seizure frequency in 80% of the epileptic animals. This translationally designed study in a clinically relevant model of epilepsy suggests that simultaneous overexpression of NPY and Y2 receptors unilaterally in the seizure focus is a relevant and promising approach that can be further validated in more extensive preclinical studies to develop a future treatment strategy for severe, often pharmacoresistant focal epilepsy cases that cannot be offered alternative therapeutic options.


Asunto(s)
Corteza Cerebral/fisiopatología , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/terapia , Terapia Genética/métodos , Receptores de Neuropéptido Y/genética , Animales , Corteza Cerebral/efectos de los fármacos , Dependovirus/genética , Electroencefalografía , Epilepsia del Lóbulo Temporal/inducido químicamente , Vectores Genéticos/administración & dosificación , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Ácido Kaínico/administración & dosificación , Masculino , Ratas , Ratas Wistar , Investigación Biomédica Traslacional
6.
Artículo en Inglés | MEDLINE | ID: mdl-26578081

RESUMEN

BACKGROUND: Besides the well-known effects of ghrelin on adiposity and food intake regulation, the ghrelin system has been shown to regulate aspects of behavior including anxiety and stress. However, the effect of virus-mediated overexpression of the ghrelin receptor in the amygdala has not previously been addressed directly. METHODS: First, we examined the acute effect of peripheral ghrelin administration on anxiety- and depression-like behavior using the open field, elevated plus maze, forced swim, and tail suspension tests. Next, we examined the effect of peripheral ghrelin administration and ghrelin receptor deficiency on stress in a familiar and social environment using the Intellicage system. Importantly, we also used a novel approach to study ghrelin receptor signaling in the brain by overexpressing the ghrelin receptor in the amygdala. We examined the effect of ghrelin receptor overexpression on anxiety-related behavior before and after acute stress and measured the modulation of serotonin receptor expression. RESULTS: We found that ghrelin caused an anxiolytic-like effect in both the open field and elevated plus maze tests. Additionally, it attenuated air-puff-induced stress in the social environment, while the opposite was shown in ghrelin receptor deficient mice. Finally, we found that overexpression of the ghrelin receptor in the basolateral division of the amygdala caused an anxiolytic-like effect and decreased the 5HT1a receptor expression. CONCLUSIONS: Ghrelin administration and overexpression of the ghrelin receptor in the amygdala induces anxiolytic-like behavior. Since the ghrelin receptor has high constitutive activity, ligand-independent signaling in vivo may be important for the observed anxiolytic-like effects. The anxiolytic effects seem to be mediated independently from the HPA axis, potentially engaging the central serotonin system.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Ansiolíticos/farmacología , Ansiedad/prevención & control , Conducta Animal/efectos de los fármacos , Ghrelina/farmacología , Receptores de Ghrelina/agonistas , Transducción de Señal/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiopatología , Animales , Ansiedad/genética , Ansiedad/metabolismo , Ansiedad/psicología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Suspensión Trasera , Humanos , Locomoción/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Receptor de Serotonina 5-HT1A/metabolismo , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo , Conducta Social , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología , Natación , Factores de Tiempo
7.
Mol Cell Neurosci ; 67: 137-43, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26141855

RESUMEN

Electroconvulsive therapy (ECT) remains one of the most effective treatments of major depression. Unfortunately, some patients report side effects, of which the most prominent are memory deficits. The immediate early gene Arc plays a critical role in the maintenance phase of long-term potentiation and consolidation of memory in the rat brain. We recently observed increased methylation of the Arc promoter 24h after acute electroconvulsive stimulation (ECS) in rats, which could cause decreased Arc expression and provide an explanation for the observed memory deficits. In the present study we investigated the methylation and expression changes of Arc at 48h post-ECS and determined the role of de-novo methylation in that process. We initially measured expression of DNA methyltransferases (Dnmt1 and Dnmt3a) and Arc 1, 4, 8, 16, 24, and 48h after a single ECS. Arc expression increased approximately 10-fold at 1 and 4h after ECS, and subsequently decreased below sham levels. Four hours after ECS we also observed a significant increase in Dnmt3a expression, which was attenuated in a second experiment by the use of DNMT inhibitor decitabine (5-aza-2-deoxycytidine). We then investigated Arc gene expression and methylation changes at 48h post-ECS and we found a slightly reduced Arc expression in ECS-treated rats as compared to sham. In animals that received decitabine we observed a significant decrease in Dnmt3a expression and an increase of Arc expression in both ECS and sham groups. The same tendency for reduced Arc expression after ECS, as compared to sham was observed despite the blocking of DNA methylation with decitabine. The DNA methylation as measured by pyrosequencing is decreased 48h post-ECS both in the promoter and intragenic regions as a response to ECS regardless of the treatment with decitabine. Overall the results suggest that DNA methylation is involved in regulating Arc expression but is not the causal mechanism responsible for reducing Arc expression after ECS. We speculate that the decrease is caused by ECS-induced HDAC2 upregulation and decreased H3 acetylation at the Arc promoter.


Asunto(s)
Proteínas del Citoesqueleto/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Epigénesis Genética , Proteínas del Tejido Nervioso/genética , Estimulación Transcraneal de Corriente Directa , Animales , Azacitidina/análogos & derivados , Azacitidina/farmacología , Encéfalo/metabolismo , Encéfalo/fisiología , Proteínas del Citoesqueleto/metabolismo , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , ADN Metiltransferasa 3A , Decitabina , Inhibidores Enzimáticos/farmacología , Masculino , Proteínas del Tejido Nervioso/metabolismo , Regiones Promotoras Genéticas , Ratas , Ratas Sprague-Dawley
8.
J Biol Chem ; 288(38): 27534-27544, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23884410

RESUMEN

The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate the role of the DAT C terminus in AMPH-evoked DA efflux using cell-permeant dominant-negative peptides. A peptide, which corresponded to the last 24 C-terminal residues of DAT (TAT-C24 DAT) and thereby contained the Ca(2+)-calmodulin-dependent protein kinase IIα (CaMKIIα) binding domain and the PSD-95/Discs-large/ZO-1 (PDZ)-binding sequence of DAT, was made membrane-permeable by fusing it to the cell membrane transduction domain of the HIV-1 Tat protein (TAT-C24WT). The ability of TAT-C24WT but not a scrambled peptide (TAT-C24Scr) to block the CaMKIIα-DAT interaction was supported by co-immunoprecipitation experiments in heterologous cells. In heterologous cells, we also found that TAT-C24WT, but not TAT-C24Scr, decreased AMPH-evoked 1-methyl-4-phenylpyridinium efflux. Moreover, chronoamperometric recordings in striatum revealed diminished AMPH-evoked DA efflux in mice preinjected with TAT-C24WT. Both in heterologous cells and in striatum, the peptide did not further inhibit efflux upon KN-93-mediated inhibition of CaMKIIα activity, consistent with a dominant-negative action preventing binding of CaMKIIα to the DAT C terminus. This was further supported by the ability of a peptide with perturbed PDZ-binding sequence, but preserved CaMKIIα binding (TAT-C24AAA), to diminish AMPH-evoked DA efflux in vivo to the same extent as TAT-C24WT. Finally, AMPH-induced locomotor hyperactivity was attenuated following systemic administration of TAT-C24WT but not TAT-C24Scr. Summarized, our findings substantiate that DAT C-terminal protein-protein interactions are critical for AMPH-evoked DA efflux and suggest that it may be possible to target protein-protein interactions to modulate transporter function and interfere with psychostimulant effects.


Asunto(s)
Anfetamina/farmacología , Péptidos de Penetración Celular/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Cuerpo Estriado/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/farmacología , Dopamina/metabolismo , Anfetamina/efectos adversos , Animales , Bencilaminas/farmacología , Péptidos de Penetración Celular/metabolismo , Estimulantes del Sistema Nervioso Central/efectos adversos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/farmacocinética , Humanos , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Dominios PDZ , Proteína Quinasa C-alfa/antagonistas & inhibidores , Proteína Quinasa C-alfa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Sulfonamidas/farmacología
9.
Synapse ; 68(10): 427-36, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24985894

RESUMEN

Kainate-induced seizures constitute a model of temporal lobe epilepsy where prominent changes are observed in the hippocampal neuropeptide Y (NPY) system. However, little is known about the functional state and signal transduction of the NPY receptor population resulting from kainate exposure. Thus, in this study, we explored functional NPY receptor activity in the mouse hippocampus and neocortex after kainate-induced seizures using NPY-stimulated [(35) S]GTPγS binding. Moreover, we also studied levels of [(125) I]-peptide YY (PYY) binding and NPY, Y1, Y2, and Y5 receptor mRNA in these kainate-treated mice. Functional NPY binding was unchanged up to 12 h post-kainate, but decreased significantly in all hippocampal regions after 24 h and 1 week. Similarly, a decrease in [(125) I]-PYY binding was found in the dentate gyrus (DG) 1 week post-kainate. However, at 2 h, 6 h, and 12 h, [(125) I]-PYY binding was increased in all regions, and in the CA1 also at 24 h post-kainate. NPY mRNA levels were prominently increased in hippocampal regions, reaching maximum at 12 and 24 h. Y1 and Y5 mRNA levels were lowered in the DG at 24 and 2 h, respectively, while Y2 mRNA levels were elevated at 24 h in the DG and CA3. This study confirms rat kainate studies by showing pronounced adaptive changes in the mouse hippocampus both with regard to NPY synthesis and NPY receptor synthesis and binding, which may contribute to regulating neuronal seizure susceptibility after kainate. However, the potential seizure-suppressant effects of increased NPY gene expression at late time points post-kainate could be attenuated by the novel finding of reduced NPY-receptor G-protein activation.


Asunto(s)
Epilepsia del Lóbulo Temporal/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Hipocampo/metabolismo , Neuropéptido Y/metabolismo , Convulsiones/metabolismo , Animales , Autorradiografía , Modelos Animales de Enfermedad , Ácido Kaínico , Masculino , Ratones , Neocórtex/metabolismo , Péptido YY/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Neuropéptido Y/metabolismo , Convulsiones/inducido químicamente , Factores de Tiempo
10.
Mol Neurobiol ; 60(10): 5755-5769, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37341859

RESUMEN

The purpose of this study was to identify and validate new putative lead drug targets in drug-resistant mesial temporal lobe epilepsy (mTLE) starting from differentially expressed genes (DEGs) previously identified in mTLE in humans by transcriptome analysis. We identified consensus DEGs among two independent mTLE transcriptome datasets and assigned them status as "lead target" if they (1) were involved in neuronal excitability, (2) were new in mTLE, and (3) were druggable. For this, we created a consensus DEG network in STRING and annotated it with information from the DISEASES database and the Target Central Resource Database (TCRD). Next, we attempted to validate lead targets using qPCR, immunohistochemistry, and Western blot on hippocampal and temporal lobe neocortical tissue from mTLE patients and non-epilepsy controls, respectively. Here we created a robust, unbiased list of 113 consensus DEGs starting from two lists of 3040 and 5523 mTLE significant DEGs, respectively, and identified five lead targets. Next, we showed that CACNB3, a voltage-gated Ca2+ channel subunit, was significantly regulated in mTLE at both mRNA and protein level. Considering the key role of Ca2+ currents in regulating neuronal excitability, this suggested a role for CACNB3 in seizure generation. This is the first time changes in CACNB3 expression have been associated with drug-resistant epilepsy in humans, and since efficient therapeutic strategies for the treatment of drug-resistant mTLE are lacking, our finding might represent a step toward designing such new treatment strategies.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/complicaciones , Lóbulo Temporal/metabolismo , Convulsiones/metabolismo , Hipocampo/metabolismo , Epilepsia Refractaria/genética , Epilepsia Refractaria/metabolismo
11.
J Neurosci ; 31(16): 5905-8, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21508215

RESUMEN

Disturbances in central dopaminergic neurotransmission are believed to be centrally involved in the pathogenesis of schizophrenia. Central dopaminergic and cholinergic systems interact and the cholinergic muscarinic agonist xanomeline has shown antipsychotic effects in clinical studies. Preclinical studies indicate that the M(4) muscarinic cholinergic receptor subtype (mAChR) modulates the activity of the dopaminergic system and that this specific mAChR subtype is involved in mediating the antipsychotic-like effects of xanomeline. A specific neuronal subpopulation that expresses M(4) mAChRs together with D(1) dopamine receptors seems to be especially important in modulating dopamine-dependent behaviors. Using mutant mice that lack the M(4) mAChR only in D(1) dopamine receptor-expressing cells (D1-M4-KO), we investigated the role of this neuronal population in the antipsychotic-like effects of xanomeline in amphetamine-induced hyperactivity and apomorphine-induced climbing. Interestingly, the antipsychotic-like effects of xanomeline in the two models were almost completely abolished in D1-M4-KO mice, suggesting that M(4) mAChRs colocalized with D(1) dopamine receptors are centrally involved in mediating the antipsychotic-like effects of xanomeline. This is consistent with the hypothesis that activation of the M(4) mAChR represents a potential target for the future medical treatment of psychosis.


Asunto(s)
Conducta Animal/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Neuronas/metabolismo , Piridinas/farmacología , Receptor Muscarínico M4/metabolismo , Tiadiazoles/farmacología , Anfetamina/farmacología , Análisis de Varianza , Animales , Conducta Animal/fisiología , Estimulantes del Sistema Nervioso Central/farmacología , Hipercinesia/inducido químicamente , Hipercinesia/metabolismo , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Neuronas/efectos de los fármacos , Receptor Muscarínico M4/genética
12.
Neurobiol Dis ; 45(1): 288-96, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21884793

RESUMEN

We recently demonstrated that recombinant adeno-associated viral vector-induced hippocampal overexpression of neuropeptide Y receptor, Y2, exerts a seizure-suppressant effect in kindling and kainate-induced models of epilepsy in rats. Interestingly, additional overexpression of neuropeptide Y in the hippocampus strengthened the seizure-suppressant effect of transgene Y2 receptors. Here we show for the first time that another neuropeptide Y receptor, Y5, can also be overexpressed in the hippocampus. However, unlike Y2 receptor overexpression, transgene Y5 receptors in the hippocampus had no effect on kainate-induced motor seizures in rats. However, combined overexpression of Y5 receptors and neuropeptide Y exerted prominent suppression of seizures. This seizure-suppressant effect of combination gene therapy with Y5 receptors and neuropeptide Y was significantly stronger as compared to neuropeptide Y overexpression alone. These results suggest that overexpression of Y5 receptors in combination with neuropeptide Y could be an alternative approach for more effective suppression of hippocampal seizures.


Asunto(s)
Hipocampo/metabolismo , Excitación Neurológica/genética , Neuropéptido Y/genética , Receptores de Neuropéptido Y/genética , Convulsiones/genética , Animales , Ácido Kaínico , Excitación Neurológica/metabolismo , Masculino , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Ratas , Ratas Transgénicas , Ratas Wistar , Receptores de Neuropéptido Y/metabolismo , Convulsiones/inducido químicamente , Convulsiones/metabolismo
13.
Synapse ; 66(9): 840-3, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22544368

RESUMEN

There is increasing data implicating neuropeptide Y (NPY) in the neurobiology of addiction. This study explored the possible role of NPY in cocaine-induced behavior using NPY knockout mice. The transgenic mice showed a hypersensitive response to cocaine in three animal models of cocaine addiction. Whether this is due to an observed compensatory increase in striatal dopamine transporter binding or an anxiogenic phenotype of the transgenic mice remains to be determined.


Asunto(s)
Trastornos Relacionados con Cocaína/genética , Neuropéptido Y/genética , Animales , Cocaína/farmacología , Trastornos Relacionados con Cocaína/metabolismo , Ratones , Ratones Noqueados
14.
Acta Neuropathol Commun ; 10(1): 113, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974377

RESUMEN

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease characterized by the accumulation of aggregated amyloid beta (Aß) and hyperphosphorylated tau along with a slow decline in cognitive functions. Unlike advanced AD, the initial steps of AD pathophysiology have been poorly investigated, partially due to limited availability of animal models focused on the early, plaque-free stages of the disease. The aim of this study was to evaluate the early behavioral, anatomical and molecular alterations in wild-type rats following intracerebroventricular injections of human Aß oligomers (AßOs). Bioactive human AD and nondemented control brain tissue extracts were characterized using ELISA and proteomics approaches. Following a bilateral infusion, rats underwent behavioral testing, including the elevated plus maze, social recognition test, Morris water maze and Y-maze within 6 weeks postinjection. An analysis of brain structure was performed with manganese-enhanced MRI. Collected brain tissues were analyzed using stereology, immunohistochemistry, ELISA and qPCR. No sensorimotor deficits affecting motor performance on different maze tasks were observed, nor was spatial memory disturbed in AD rats. In contrast, a significant impairment of social memory became evident at 21 days postinjection. This deficit was associated with a significantly decreased volume of the lateral entorhinal cortex and a tendency toward a decrease in the total brain volume. Significant increase of cleaved caspase-3-positive cells, microglial activation and proinflammatory responses accompanied by altered expression of synaptic markers were observed in the hippocampus of AD rats with immunohistochemical and qPCR approaches at 6 weeks postinjection. Our data suggest that the social memory impairment observed in AßO-injected rats might be determined by neuroinflammatory responses and synaptopathy. An infusion of native oligomeric Aß in the rat brain represents a feasible tool to model early plaque-free events associated with AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Aprendizaje por Laberinto/fisiología , Enfermedades Neurodegenerativas/metabolismo , Placa Amiloide/metabolismo , Ratas
15.
J Neurosci ; 30(6): 2396-405, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20147565

RESUMEN

Acetylcholine (ACh) regulates many key functions of the CNS by activating cell surface receptors referred to as muscarinic ACh receptors (M(1)-M(5) mAChRs). Like other mAChR subtypes, the M(4) mAChR is widely expressed in different regions of the forebrain. Interestingly, M(4) mAChRs are coexpressed with D(1) dopamine receptors in a specific subset of striatal projection neurons. To investigate the physiological relevance of this M(4) mAChR subpopulation in modulating dopamine-dependent behaviors, we used Cre/loxP technology to generate mutant mice that lack M(4) mAChRs only in D(1) dopamine receptor-expressing cells. The newly generated mutant mice displayed several striking behavioral phenotypes, including enhanced hyperlocomotor activity and increased behavioral sensitization following treatment with psychostimulants. These behavioral changes were accompanied by a lack of muscarinic inhibition of D(1) dopamine receptor-mediated cAMP stimulation in the striatum and an increase in dopamine efflux in the nucleus accumbens. These novel findings demonstrate that a distinct subpopulation of neuronal M(4) mAChRs plays a critical role in modulating several important dopamine-dependent behaviors. Since enhanced central dopaminergic neurotransmission is a hallmark of several severe disorders of the CNS, including schizophrenia and drug addiction, our findings have substantial clinical relevance.


Asunto(s)
Conducta Animal/fisiología , Dopamina/fisiología , Neuronas/fisiología , Receptor Muscarínico M4/metabolismo , Anfetamina/farmacología , Animales , Antipsicóticos/farmacología , Conducta Animal/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Cocaína/farmacología , Cuerpo Estriado/metabolismo , AMP Cíclico/biosíntesis , Ratones , Ratones Mutantes , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/metabolismo , Receptor Muscarínico M4/genética , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/biosíntesis
16.
Brain ; 133(9): 2778-88, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20688813

RESUMEN

Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is predominantly mediated by Y2 receptors, which, together with neuropeptide Y, are upregulated after seizures as a compensatory mechanism. To explore whether such upregulation could prevent seizures, we overexpressed Y2 receptors in the hippocampus using recombinant adeno-associated viral vectors. In two temporal lobe epilepsy models, electrical kindling and kainate-induced seizures, vector-based transduction of Y2 receptor complementary DNA in the hippocampus of adult rats exerted seizure-suppressant effects. Simultaneous overexpression of Y2 and neuropeptide Y had a more pronounced seizure-suppressant effect. These results demonstrate that overexpression of Y2 receptors (alone or in combination with neuropeptide Y) could be an alternative strategy for epilepsy treatment.


Asunto(s)
Terapia Genética/métodos , Hipocampo/metabolismo , Receptores de Neuropéptido Y/uso terapéutico , Convulsiones/patología , Convulsiones/terapia , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Estimulación Eléctrica/efectos adversos , Vectores Genéticos/fisiología , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Ácido Kaínico/efectos adversos , Excitación Neurológica/genética , Excitación Neurológica/fisiología , Masculino , Unión Proteica/genética , Radiografía/métodos , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo , Convulsiones/etiología , Isótopos de Azufre/farmacocinética , Transcripción Genética/fisiología
17.
Front Mol Neurosci ; 14: 695937, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690692

RESUMEN

In recent years, gene therapy has been raising hopes toward viable treatment strategies for rare genetic diseases for which there has been almost exclusively supportive treatment. We here review this progress at the pre-clinical and clinical trial levels as well as market approvals within diseases that specifically affect the brain and spinal cord, including degenerative, developmental, lysosomal storage, and metabolic disorders. The field reached an unprecedented milestone when Zolgensma® (onasemnogene abeparvovec) was approved by the FDA and EMA for in vivo adeno-associated virus-mediated gene replacement therapy for spinal muscular atrophy. Shortly after EMA approved Libmeldy®, an ex vivo gene therapy with lentivirus vector-transduced autologous CD34-positive stem cells, for treatment of metachromatic leukodystrophy. These successes could be the first of many more new gene therapies in development that mostly target loss-of-function mutation diseases with gene replacement (e.g., Batten disease, mucopolysaccharidoses, gangliosidoses) or, less frequently, gain-of-toxic-function mutation diseases by gene therapeutic silencing of pathologic genes (e.g., amyotrophic lateral sclerosis, Huntington's disease). In addition, the use of genome editing as a gene therapy is being explored for some diseases, but this has so far only reached clinical testing in the treatment of mucopolysaccharidoses. Based on the large number of planned, ongoing, and completed clinical trials for rare genetic central nervous system diseases, it can be expected that several novel gene therapies will be approved and become available within the near future. Essential for this to happen is the in depth characterization of short- and long-term effects, safety aspects, and pharmacodynamics of the applied gene therapy platforms.

18.
Biomedicines ; 9(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34944691

RESUMEN

Progressive degeneration of dopaminergic neurons, immune activation, and α-synuclein pathology characterize Parkinson's disease (PD). We previously reported that unilateral intranigral injection of recombinant adeno-associated viral (rAAV) vectors encoding wild-type human α-synuclein produced a rat model of early PD with dopamine terminal dysfunction. Here we tested the hypothesis that decreases in dopamine result in increased postsynaptic dopamine D2/D3 receptor expression, neuroinflammation, and reduced synaptic vesicle glycoprotein 2A (SV2A) density. Rats were injected with rAAV encoding α-synuclein or green fluorescent protein and subjected to non-pharmacological motor tests, before euthanization at 12 weeks post-injection. We performed: (1) in situ hybridization of nigral tyrosine hydroxylase mRNA, (2) HPLC of striatal dopamine content, and (3) autoradiography with [3H]raclopride, [3H]DTBZ, [3H]GBR12935, [3H]PK11195, and [3H]UCB-J to measure binding at D2/3 receptors, vesicular monoamine transporter 2, dopamine transporters, mitochondrial translocator protein, and SV2A, respectively. rAAV-α-synuclein induced motor asymmetry and reduced tyrosine hydroxylase mRNA and dopamine content in ipsilateral brain regions. This was paralleled by elevated ipsilateral postsynaptic dopamine D2/3 receptor expression and immune activation, with no changes to synaptic SV2A density. In conclusion, α-synuclein overexpression results in dopaminergic degeneration that induced compensatory increases in D2/3 binding and immune activation, recapitulating many of the pathological characteristics of PD.

19.
Mol Metab ; 47: 101174, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33549847

RESUMEN

OBJECTIVE: The goal of this study was to investigate the importance of central hormone-sensitive lipase (HSL) expression in the regulation of food intake and body weight in mice to clarify whether intracellular lipolysis in the mammalian hypothalamus plays a role in regulating appetite. METHODS: Using pharmacological and genetic approaches, we investigated the role of HSL in the rodent brain in the regulation of feeding and energy homeostasis under basal conditions during acute stress and high-fat diet feeding. RESULTS: We found that HSL, a key enzyme in the catabolism of cellular lipid stores, is expressed in the appetite-regulating centers in the hypothalamus and is activated by acute stress through a mechanism similar to that observed in adipose tissue and skeletal muscle. Inhibition of HSL in rodent models by a synthetic ligand, global knockout, or brain-specific deletion of HSL prevents a decrease in food intake normally seen in response to acute stress and is associated with the increased expression of orexigenic peptides neuropeptide Y (NPY) and agouti-related peptide (AgRP). Increased food intake can be reversed by adeno-associated virus-mediated reintroduction of HSL in neurons of the mediobasal hypothalamus. Importantly, metabolic stress induced by a high-fat diet also enhances the hyperphagic phenotype of HSL-deficient mice. Specific deletion of HSL in the ventromedial hypothalamic nucleus (VMH) or AgRP neurons reveals that HSL in the VMH plays a role in both acute stress-induced food intake and high-fat diet-induced obesity. CONCLUSIONS: Our results indicate that HSL activity in the mediobasal hypothalamus is involved in the acute reduction in food intake during the acute stress response and sensing of a high-fat diet.


Asunto(s)
Apetito/fisiología , Homeostasis , Hipotálamo/metabolismo , Esterol Esterasa/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos , Metabolismo Energético , Femenino , Hiperfagia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Obesidad/metabolismo , Factores de Empalme de ARN , Esterol Esterasa/genética , Estrés Fisiológico/genética , Transcriptoma
20.
Alcohol Clin Exp Res ; 34(3): 462-70, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20028355

RESUMEN

BACKGROUND: Multiple episodes of ethanol intoxication and withdrawal result in progressive, irreversible intensification of the withdrawal reaction, a process termed "ethanol withdrawal kindling." Previous studies show that a single episode of chronic ethanol intoxication and withdrawal causes prominent changes in neuropeptide Y (NPY) and its receptors that have been implicated in regulating withdrawal hyperexcitability. This study for the first time examined the NPY system during ethanol withdrawal kindling. METHODS: Ethanol withdrawal kindling was studied in rats receiving 16 episodes of 2 days of chronic ethanol intoxication by intragastric intubations followed by 5 days withdrawal. The study included 6 groups: 4 multiple withdrawal episode (MW) groups [peak withdrawal plus (MW+)/minus (MW-) seizures, 3-day (MW3d), and 1-month (MW1mth) withdrawal], a single withdrawal episode group (SW), and an isocalorically fed control group. Gene expression of NPY and its receptors Y1, Y2, and Y5 was studied in the hippocampal dentate gyrus (DG) and CA3/CA1, as well as piriform cortex (PirCx), and neocortex (NeoCx). RESULTS: MW+/- as well as SW groups showed decreased NPY gene expression in all hippocampal areas compared with controls, but, in the DG and CA3, decreases were significantly smaller in the MW- group compared with the SW group. In the MW+/- and SW groups, Y1, Y2, and Y5 mRNA levels were decreased in most brain areas compared with controls; however, decreases in Y1 and Y5 mRNA were augmented in the MW+/- groups compared with the SW group. The MW+ group differed from the MW- group in the PirCx, where Y2 gene expression was significantly higher. CONCLUSION: Multiple withdrawal episodes reversibly decreased NPY and NPY receptor mRNA levels at peak withdrawal, with smaller decreases in NPY mRNA levels and augmented decreases in Y1/Y5 mRNA levels compared with a SW episode. Multiple withdrawal-induced seizures increased the Y2 mRNA levels in PirCx. These complex changes in NPY system gene expression could play a role in the ethanol withdrawal kindling process.


Asunto(s)
Trastornos del Sistema Nervioso Inducidos por Alcohol/metabolismo , Corteza Cerebral/metabolismo , Excitación Neurológica/metabolismo , Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/metabolismo , Intoxicación Alcohólica/metabolismo , Animales , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hibridación in Situ , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA